These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18252315)

  • 1. Obstacle avoidance for autonomous land vehicle navigation in indoor environments by quadratic classifier.
    Ku CH; Tsai WH
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(3):416-26. PubMed ID: 18252315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An incremental-learning-by-navigation approach to vision-based autonomous land vehicle guidance in indoor environments using vertical line information and multiweighted generalized Hough transform technique.
    Chen GY; Tsai WH
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):740-8. PubMed ID: 18255993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double Deep Q-Learning and Faster R-CNN-Based Autonomous Vehicle Navigation and Obstacle Avoidance in Dynamic Environment.
    Bin Issa R; Das M; Rahman MS; Barua M; Rhaman MK; Ripon KSN; Alam MGR
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A traffic priority language for collision-free navigation of autonomous mobile robots in dynamic environments.
    Bourbakis NG
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(4):573-87. PubMed ID: 18255898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proposed UAV for indoor patient care.
    Todd C; Watfa M; El Mouden Y; Sahir S; Ali A; Niavarani A; Lutfi A; Copiaco A; Agarwal V; Afsari K; Johnathon C; Okafor O; Ayad M
    Technol Health Care; 2015 Sep; ():. PubMed ID: 26409533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.
    Li T; Chang X; Wu Z; Li J; Shao G; Deng X; Qiu J; Guo B; Zhang G; He Q; Li L; Wang J
    ACS Nano; 2017 Sep; 11(9):9268-9275. PubMed ID: 28803481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analytically tractable potential field model of free space and its application in obstacle avoidance.
    Chuang JH; Ahuja N
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):729-36. PubMed ID: 18255991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Predictive Guidance Obstacle Avoidance Algorithm for AUV in Unknown Environments.
    Li J; Zhang J; Zhang H; Yan Z
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning sensor-based navigation of a real mobile robot in unknown worlds.
    Araujo R; de Almeida AT
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):164-78. PubMed ID: 18252290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacle Detection and Avoidance System Based on Monocular Camera and Size Expansion Algorithm for UAVs.
    Al-Kaff A; García F; Martín D; De La Escalera A; Armingol JM
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision.
    Maravall D; de Lope J; Fuentes JP
    Front Neurorobot; 2017; 11():46. PubMed ID: 28900394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Sonar Fusion for Layered Navigation Controller.
    Jansen W; Laurijssen D; Steckel J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.
    Yan Z; Li J; Zhang G; Wu Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-Target Homotopic Quasi-Complete Path Planning Method for Mobile Robot Using a Piecewise Linear Approach.
    Diaz-Arango G; Vazquez-Leal H; Hernandez-Martinez L; Jimenez-Fernandez VM; Heredia-Jimenez A; Ambrosio RC; Huerta-Chua J; De Cos-Cholula H; Hernandez-Mendez S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Motion Planning in GPS-Denied Environments Using Nonlinear Model Predictive Horizon.
    Younes YA; Barczyk M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.
    Shim Y; Kim GW
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation.
    Omrane H; Masmoudi MS; Masmoudi M
    Comput Intell Neurosci; 2016; 2016():9548482. PubMed ID: 27688748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On obstacle avoidance path planning in unknown 3D environments: A fluid-based framework.
    Wu J; Wang H; Zhang M; Yu Y
    ISA Trans; 2021 May; 111():249-264. PubMed ID: 33272588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.