These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 18252445)
1. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. Huang GB; Babri HA IEEE Trans Neural Netw; 1998; 9(1):224-9. PubMed ID: 18252445 [TBL] [Abstract][Full Text] [Related]
2. Learning capability and storage capacity of two-hidden-layer feedforward networks. Huang GB IEEE Trans Neural Netw; 2003; 14(2):274-81. PubMed ID: 18238011 [TBL] [Abstract][Full Text] [Related]
3. On the approximation by single hidden layer feedforward neural networks with fixed weights. Guliyev NJ; Ismailov VE Neural Netw; 2018 Feb; 98():296-304. PubMed ID: 29301110 [TBL] [Abstract][Full Text] [Related]
4. Classification ability of single hidden layer feedforward neural networks. Huang GB; Chen YQ; Babri HA IEEE Trans Neural Netw; 2000; 11(3):799-801. PubMed ID: 18249806 [TBL] [Abstract][Full Text] [Related]
5. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Huang GB; Chen L; Siew CK IEEE Trans Neural Netw; 2006 Jul; 17(4):879-892. PubMed ID: 16856652 [TBL] [Abstract][Full Text] [Related]
6. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
7. Generalized single-hidden layer feedforward networks for regression problems. Wang N; Er MJ; Han M IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1161-76. PubMed ID: 25051564 [TBL] [Abstract][Full Text] [Related]
8. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. Teoh EJ; Tan KC; Xiang C IEEE Trans Neural Netw; 2006 Nov; 17(6):1623-9. PubMed ID: 17131674 [TBL] [Abstract][Full Text] [Related]
9. A fast and accurate online sequential learning algorithm for feedforward networks. Liang NY; Huang GB; Saratchandran P; Sundararajan N IEEE Trans Neural Netw; 2006 Nov; 17(6):1411-23. PubMed ID: 17131657 [TBL] [Abstract][Full Text] [Related]
10. A simple method to derive bounds on the size and to train multilayer neural networks. Sartori MA; Antsaklis PJ IEEE Trans Neural Netw; 1991; 2(4):467-71. PubMed ID: 18276399 [TBL] [Abstract][Full Text] [Related]
11. Bounds on the number of hidden neurons in three-layer binary neural networks. Zhang Z; Ma X; Yang Y Neural Netw; 2003 Sep; 16(7):995-1002. PubMed ID: 14692634 [TBL] [Abstract][Full Text] [Related]
12. Constructive approximation to multivariate function by decay RBF neural network. Hou M; Han X IEEE Trans Neural Netw; 2010 Sep; 21(9):1517-23. PubMed ID: 20693108 [TBL] [Abstract][Full Text] [Related]
13. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines. Vanli ND; Sayin MO; Delibalta I; Kozat SS IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):546-558. PubMed ID: 26978837 [TBL] [Abstract][Full Text] [Related]
14. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Feng G; Huang GB; Lin Q; Gay R IEEE Trans Neural Netw; 2009 Aug; 20(8):1352-7. PubMed ID: 19596632 [TBL] [Abstract][Full Text] [Related]
15. Robust single-hidden layer feedforward network-based pattern classifier. Man Z; Lee K; Wang D; Cao Z; Khoo S IEEE Trans Neural Netw Learn Syst; 2012 Dec; 23(12):1974-86. PubMed ID: 24808151 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of feedforward networks in supremum error bound. Ciesielski K; Sacha JP; Cios KJ IEEE Trans Neural Netw; 2000; 11(6):1213-27. PubMed ID: 18249848 [TBL] [Abstract][Full Text] [Related]
17. A Single Hidden Layer Feedforward Network with Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function. Guliyev NJ; Ismailov VE Neural Comput; 2016 Jul; 28(7):1289-304. PubMed ID: 27171269 [TBL] [Abstract][Full Text] [Related]
18. Parsimonious extreme learning machine using recursive orthogonal least squares. Wang N; Er MJ; Han M IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1828-41. PubMed ID: 25291736 [TBL] [Abstract][Full Text] [Related]
19. Upper bound of the expected training error of neural network regression for a Gaussian noise sequence. Hagiwara K; Hayasaka T; Toda N; Usui S; Kuno K Neural Netw; 2001 Dec; 14(10):1419-29. PubMed ID: 11771721 [TBL] [Abstract][Full Text] [Related]