These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18252461)

  • 1. Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design.
    Sudareshan MK; Condarcure TA
    IEEE Trans Neural Netw; 1998; 9(3):354-68. PubMed ID: 18252461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised training of dynamical neural networks for associative memory design and identification of nonlinear maps.
    Sudharsanan SI; Sundareshan MK
    Int J Neural Syst; 1994 Sep; 5(3):165-80. PubMed ID: 7866623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved training of neural networks for the nonlinear active control of sound and vibration.
    Bouchard M; Paillard B; Le Dinh CT
    IEEE Trans Neural Netw; 1999; 10(2):391-401. PubMed ID: 18252535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks.
    Puskorius GV; Feldkamp LA
    IEEE Trans Neural Netw; 1994; 5(2):279-97. PubMed ID: 18267797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.
    Fairbank M; Li S; Fu X; Alonso E; Wunsch D
    Neural Netw; 2014 Jan; 49():74-86. PubMed ID: 24161455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.
    Shih P; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1369-88. PubMed ID: 18701368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analog VLSI recurrent neural network learning a continuous-time trajectory.
    Cauwenberghs G
    IEEE Trans Neural Netw; 1996; 7(2):346-61. PubMed ID: 18255589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constrained optimization approach to preserving prior knowledge during incremental training.
    Ferrari S; Jensenius M
    IEEE Trans Neural Netw; 2008 Jun; 19(6):996-1009. PubMed ID: 18541500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust neural network tracking controller using simultaneous perturbation stochastic approximation.
    Song Q; Spall JC; Soh YC; Ni J
    IEEE Trans Neural Netw; 2008 May; 19(5):817-35. PubMed ID: 18467211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular architecture for transparent computation in recurrent neural networks.
    Carmantini GS; Beim Graben P; Desroches M; Rodrigues S
    Neural Netw; 2017 Jan; 85():85-105. PubMed ID: 27814468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems.
    Luitel B; Venayagamoorthy GK
    Neural Netw; 2010 Jun; 23(5):583-6. PubMed ID: 20071140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symbolic representation of recurrent neural network dynamics.
    Huynh TQ; Reggia JA
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1649-58. PubMed ID: 24808009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.
    Jagannathan S; He P
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2073-87. PubMed ID: 19054732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks.
    Yang Q; Vance JB; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):994-1001. PubMed ID: 18632390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network controller for systems with unmodeled dynamics with applications to wastewater treatment.
    Spall JC; Cristion JA
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(3):369-75. PubMed ID: 18255877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on feedback error learning controller for functional electrical stimulation: generation of target trajectories by minimum jerk model.
    Watanabe T; Fukushima K
    Artif Organs; 2011 Mar; 35(3):270-4. PubMed ID: 21401673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent robust tracking control for a class of uncertain strict-feedback nonlinear systems.
    Chang YC
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):142-55. PubMed ID: 19150764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theory of local learning, the learning channel, and the optimality of backpropagation.
    Baldi P; Sadowski P
    Neural Netw; 2016 Nov; 83():51-74. PubMed ID: 27584574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.