These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18252471)
1. An analytical framework for local feedforward networks. Weaver S; Baird L; Polycarpou M IEEE Trans Neural Netw; 1998; 9(3):473-82. PubMed ID: 18252471 [TBL] [Abstract][Full Text] [Related]
2. A quantified sensitivity measure for multilayer perceptron to input perturbation. Zeng X; Yeung DS Neural Comput; 2003 Jan; 15(1):183-212. PubMed ID: 12590825 [TBL] [Abstract][Full Text] [Related]
3. Local coupled feedforward neural network. Sun J Neural Netw; 2010 Jan; 23(1):108-13. PubMed ID: 19596550 [TBL] [Abstract][Full Text] [Related]
4. Optimized approximation algorithm in neural networks without overfitting. Liu Y; Starzyk JA; Zhu Z IEEE Trans Neural Netw; 2008 Jun; 19(6):983-95. PubMed ID: 18541499 [TBL] [Abstract][Full Text] [Related]
5. On the approximation by single hidden layer feedforward neural networks with fixed weights. Guliyev NJ; Ismailov VE Neural Netw; 2018 Feb; 98():296-304. PubMed ID: 29301110 [TBL] [Abstract][Full Text] [Related]
6. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
7. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT; Won Y; Kim JJ Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [TBL] [Abstract][Full Text] [Related]
8. Extreme Learning Machine for Multilayer Perceptron. Tang J; Deng C; Huang GB IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):809-21. PubMed ID: 25966483 [TBL] [Abstract][Full Text] [Related]
9. Novel maximum-margin training algorithms for supervised neural networks. Ludwig O; Nunes U IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990 [TBL] [Abstract][Full Text] [Related]
10. A Single Hidden Layer Feedforward Network with Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function. Guliyev NJ; Ismailov VE Neural Comput; 2016 Jul; 28(7):1289-304. PubMed ID: 27171269 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity analysis of multilayer perceptron to input and weight perturbations. Zeng X; Yeung DS IEEE Trans Neural Netw; 2001; 12(6):1358-66. PubMed ID: 18249965 [TBL] [Abstract][Full Text] [Related]
12. Enhancing MLP networks using a distributed data representation. Narayan S; Tagliarini GA; Page EW IEEE Trans Syst Man Cybern B Cybern; 1996; 26(1):143-9. PubMed ID: 18263014 [TBL] [Abstract][Full Text] [Related]
13. Feedforward neural network with adaptive reference pattern layer. Lehtokangas M Int J Neural Syst; 1999 Feb; 9(1):1-9. PubMed ID: 10401926 [TBL] [Abstract][Full Text] [Related]
14. A hybrid linear/nonlinear training algorithm for feedforward neural networks. McLoone S; Brown MD; Irwin G; Lightbody A IEEE Trans Neural Netw; 1998; 9(4):669-84. PubMed ID: 18252490 [TBL] [Abstract][Full Text] [Related]
15. Neural networks for signal processing applications: ECG classification. Mahalingam N; Kumar D Australas Phys Eng Sci Med; 1997 Sep; 20(3):147-51. PubMed ID: 9409015 [TBL] [Abstract][Full Text] [Related]
16. Comments on local minima free conditions in multilayer perceptrons. Gori M; Tsoi AC IEEE Trans Neural Netw; 1998; 9(5):1051-3. PubMed ID: 18255789 [TBL] [Abstract][Full Text] [Related]
17. On the closure of the set of functions that can be realized by a given multilayer perceptron. Gori M; Scarselli F; Tsoi AC IEEE Trans Neural Netw; 1998; 9(6):1086-98. PubMed ID: 18255794 [TBL] [Abstract][Full Text] [Related]
18. A constructive method for multivariate function approximation by multilayer perceptrons. Geva S; Sitte J IEEE Trans Neural Netw; 1992; 3(4):621-4. PubMed ID: 18276462 [TBL] [Abstract][Full Text] [Related]
19. Existence and uniqueness results for neural network approximations. Williamson RC; Helmke U IEEE Trans Neural Netw; 1995; 6(1):2-13. PubMed ID: 18263280 [TBL] [Abstract][Full Text] [Related]
20. Using random weights to train multilayer networks of hard-limiting units. Barlett PL; Downs T IEEE Trans Neural Netw; 1992; 3(2):202-10. PubMed ID: 18276421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]