These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18252505)

  • 1. Extended Hopfield models for combinatorial optimization.
    Le Gall A; Zissimopoulos V
    IEEE Trans Neural Netw; 1999; 10(1):72-80. PubMed ID: 18252505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and analysis of maximum Hopfield networks.
    Galán-Marín G; Muñoz-Pérez J
    IEEE Trans Neural Netw; 2001; 12(2):329-39. PubMed ID: 18244387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks.
    Cheng L; Hou ZG; Lin Y; Tan M; Zhang WC; Wu FX
    IEEE Trans Neural Netw; 2011 May; 22(5):714-26. PubMed ID: 21427022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recurrent neural network for solving a class of generalized convex optimization problems.
    Hosseini A; Wang J; Hosseini SM
    Neural Netw; 2013 Aug; 44():78-86. PubMed ID: 23584134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of the inverse function delayed neural network for solving combinatorial optimization problems.
    Hayakawa Y; Nakajima K
    IEEE Trans Neural Netw; 2010 Feb; 21(2):224-37. PubMed ID: 20007029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving convergence and solution quality of Hopfield-type neural networks with augmented Lagrange multipliers.
    Li SZ
    IEEE Trans Neural Netw; 1996; 7(6):1507-16. PubMed ID: 18263545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural techniques for combinatorial optimization with applications.
    Smith K; Palaniswami M; Krishnamoorthy M
    IEEE Trans Neural Netw; 1998; 9(6):1301-18. PubMed ID: 18255811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group updates and multiscaling: an efficient neural network approach to combinatorial optimization.
    Likas A; Stafylopatis A
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(2):222-32. PubMed ID: 18263025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Optimal" Hopfield network for combinatorial optimization with linear cost function.
    Matsuda S
    IEEE Trans Neural Netw; 1998; 9(6):1319-30. PubMed ID: 18255812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial optimization by weight annealing in memristive hopfield networks.
    Fahimi Z; Mahmoodi MR; Nili H; Polishchuk V; Strukov DB
    Sci Rep; 2021 Aug; 11(1):16383. PubMed ID: 34385475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified framework for chaotic neural-network approaches to combinatorial optimization.
    Kwok T; Smith KA
    IEEE Trans Neural Netw; 1999; 10(4):978-81. PubMed ID: 18252601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptiveness in monotone pseudo-Boolean optimization and stochastic neural computation.
    Grossi G
    Int J Neural Syst; 2009 Aug; 19(4):241-52. PubMed ID: 19731398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neural network approach to job-shop scheduling.
    Zhou DN; Cherkassky V; Baldwin TR; Olson DE
    IEEE Trans Neural Netw; 1991; 2(1):175-9. PubMed ID: 18276371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hysteretic Hopfield neural network.
    Bharitkar S; Mendel JM
    IEEE Trans Neural Netw; 2000; 11(4):879-88. PubMed ID: 18249816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hopfield neural network for image change detection.
    Pajares G
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1250-64. PubMed ID: 17001985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-convergent double-sigmoid Hopfield neural network as applied to optimization problems.
    Uykan Z
    IEEE Trans Neural Netw Learn Syst; 2013 Jun; 24(6):990-6. PubMed ID: 24808479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scheduling multiprocessor job with resource and timing constraints using neural networks.
    Huang YM; Chen RM
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(4):490-502. PubMed ID: 18252324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical improvement of the Hopfield model for feasible solutions to the traveling salesman problem by a synapse dynamical system.
    Takahashi Y
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):906-19. PubMed ID: 18256012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative updating in the Hopfield model.
    Munehisa T; Kobayashi M; Yamazaki H
    IEEE Trans Neural Netw; 2001; 12(5):1243-51. PubMed ID: 18249951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Generalized Hopfield Network for Nonsmooth Constrained Convex Optimization: Lie Derivative Approach.
    Li C; Yu X; Huang T; Chen G; He X
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):308-21. PubMed ID: 26595931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.