These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18252522)

  • 1. Estimations of error bounds for neural-network function approximators.
    Townsend NW; Tarassenko L
    IEEE Trans Neural Netw; 1999; 10(2):217-30. PubMed ID: 18252522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian approach to neural-network modeling with input uncertainty.
    Wright WA
    IEEE Trans Neural Netw; 1999; 10(6):1261-70. PubMed ID: 18252629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guaranteed approximation error estimation of neural networks and model modification.
    Yang Y; Wang T; Woolard JP; Xiang W
    Neural Netw; 2022 Jul; 151():61-69. PubMed ID: 35395513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Taguchi's method of experimental design to control errors in layered perceptrons.
    Peterson GE; St Clair DC; Aylward SR; Bond WE
    IEEE Trans Neural Netw; 1995; 6(4):949-61. PubMed ID: 18263383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of rules from artificial neural networks for nonlinear regression.
    Setiono R; Leow WK; Zurada JM
    IEEE Trans Neural Netw; 2002; 13(3):564-77. PubMed ID: 18244457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuzzy function approximators with ellipsoidal regions.
    Abe S
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(5):654-61. PubMed ID: 18252344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TSK fuzzy function approximators: design and accuracy analysis.
    Sonbol AH; Fadali MS; Jafarzadeh S
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):702-12. PubMed ID: 22155964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced-Order Neural Network Synthesis With Robustness Guarantees.
    Drummond R; Turner MC; Duncan SR
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35737610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.
    Vuković N; Miljković Z
    Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy analysis for wavelet approximations.
    Delyon B; Juditsky A; Benveniste A
    IEEE Trans Neural Netw; 1995; 6(2):332-48. PubMed ID: 18263316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning neural networks with noisy inputs using the errors-in-variables approach.
    Van Gorp J; Schoukens J; Pintelon R
    IEEE Trans Neural Netw; 2000; 11(2):402-14. PubMed ID: 18249770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method to derive bounds on the size and to train multilayer neural networks.
    Sartori MA; Antsaklis PJ
    IEEE Trans Neural Netw; 1991; 2(4):467-71. PubMed ID: 18276399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantified sensitivity measure for multilayer perceptron to input perturbation.
    Zeng X; Yeung DS
    Neural Comput; 2003 Jan; 15(1):183-212. PubMed ID: 12590825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature decomposition architectures for neural networks: algorithms, error bounds, and applications.
    Wang H; Mukhopadhyay S; Fang S
    Int J Neural Syst; 2002 Feb; 12(1):69-81. PubMed ID: 11852445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of universal approximators incorporating partial monotonicity by structure.
    Minin A; Velikova M; Lang B; Daniels H
    Neural Netw; 2010 May; 23(4):471-5. PubMed ID: 19796915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity analysis of single hidden-layer neural networks with threshold functions.
    Oh SH; Lee Y
    IEEE Trans Neural Netw; 1995; 6(4):1005-7. PubMed ID: 18263389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformations of sigma-pi nets: obtaining reflected functions by reflecting weight matrices.
    Neville RS; Eldridge S
    Neural Netw; 2002 Apr; 15(3):375-93. PubMed ID: 12125892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confidence interval prediction for neural network models.
    Chryssolouris G; Lee M; Ramsey A
    IEEE Trans Neural Netw; 1996; 7(1):229-32. PubMed ID: 18255575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems.
    Lian J; Lee Y; Sudhoff SD; Zak SH
    IEEE Trans Neural Netw; 2008 Mar; 19(3):460-74. PubMed ID: 18334365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.