These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18252565)

  • 1. Cost functions to estimate a posteriori probabilities in multiclass problems.
    Cid-Sueiro J; Arribas JI; Urbán-Muñoz S; Figueiras-Vidal AR
    IEEE Trans Neural Netw; 1999; 10(3):645-56. PubMed ID: 18252565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal learning rule that minimizes well-formed cost functions.
    Mora-Jiménez I; Cid-Sueiro J
    IEEE Trans Neural Netw; 2005 Jul; 16(4):810-20. PubMed ID: 16121723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Any reasonable cost function can be used for a posteriori probability approximation.
    Saerens M; Latinne P; Decaestecker C
    IEEE Trans Neural Netw; 2002; 13(5):1204-10. PubMed ID: 18244517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the structure of strict sense Bayesian cost functions and its applications.
    Cid-Sueiro J; Figueiras-Vidal AR
    IEEE Trans Neural Netw; 2001; 12(3):445-55. PubMed ID: 18249879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Network Classifiers Estimate Bayesian
    Richard MD; Lippmann RP
    Neural Comput; 1991; 3(4):461-483. PubMed ID: 31167331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic organization of output codes in multiclass learning problems.
    Utschick W; Weichselberger W
    Neural Comput; 2001 May; 13(5):1065-102. PubMed ID: 11359645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation of log-likelihood loss function for multiclass boosting.
    Kanamori T
    Neural Netw; 2010 Sep; 23(7):843-64. PubMed ID: 20542407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On self-organizing algorithms and networks for class-separability features.
    Chatterjee C; Roychowdhury VP
    IEEE Trans Neural Netw; 1997; 8(3):663-78. PubMed ID: 18255669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building cost functions minimizing to some summary statistics.
    Saerens M
    IEEE Trans Neural Netw; 2000; 11(6):1263-71. PubMed ID: 18249852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New results on error correcting output codes of kernel machines.
    Passerini A; Pontil M; Frasconi P
    IEEE Trans Neural Netw; 2004 Jan; 15(1):45-54. PubMed ID: 15387246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model selection algorithm for a posteriori probability estimation with neural networks.
    Arribas JI; Cid-Sueiro J
    IEEE Trans Neural Netw; 2005 Jul; 16(4):799-809. PubMed ID: 16121722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Model-Free Multiclass Probability Estimation.
    Wu Y; Zhang HH; Liu Y
    J Am Stat Assoc; 2010 Mar; 105(489):424-436. PubMed ID: 21113386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exponential H∞ filtering for discrete-time switched neural networks with random delays.
    Mathiyalagan K; Su H; Shi P; Sakthivel R
    IEEE Trans Cybern; 2015 Apr; 45(4):676-87. PubMed ID: 25020225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure.
    Saerens M; Latinne P; Decaestecker C
    Neural Comput; 2002 Jan; 14(1):21-41. PubMed ID: 11747533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalized learning paradigm exploiting the structure of feedforward neural networks.
    Parisi R; Di Claudio ED; Orlandi G; Rao BD
    IEEE Trans Neural Netw; 1996; 7(6):1450-60. PubMed ID: 18263538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiclass support vector machines with example-dependent costs applied to plankton biomass estimation.
    González P; Álvarez E; Barranquero J; Díez J; González-Quirós R; Nogueira E; López-Urrutia Á; del Coz JJ
    IEEE Trans Neural Netw Learn Syst; 2013 Nov; 24(11):1901-5. PubMed ID: 24808621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of nonlinear random transformations by non-gaussian stochastic neural networks.
    Turchetti C; Crippa P; Pirani M; Biagetti G
    IEEE Trans Neural Netw; 2008 Jun; 19(6):1033-60. PubMed ID: 18541503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A universal approximate cross-validation criterion for regular risk functions.
    Commenges D; Proust-Lima C; Samieri C; Liquet B
    Int J Biostat; 2015 May; 11(1):51-67. PubMed ID: 25849800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic output feedback stabilization for nonlinear systems based on standard neural network models.
    Liu M
    Int J Neural Syst; 2006 Aug; 16(4):305-17. PubMed ID: 16972318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.