These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18252582)

  • 1. Controlling chaos by GA-based reinforcement learning neural network.
    Lin CT; Jou CP
    IEEE Trans Neural Netw; 1999; 10(4):846-59. PubMed ID: 18252582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
    Lin CT; Jou CP
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(2):276-89. PubMed ID: 18244754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement learning for an ART-based fuzzy adaptive learning control network.
    Lin CJ; Lin CT
    IEEE Trans Neural Netw; 1996; 7(3):709-31. PubMed ID: 18263467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A parallel fuzzy inference model with distributed prediction scheme for reinforcement learning.
    Kuo YH; Hsu JP; Wang CW
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(2):160-72. PubMed ID: 18255934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal difference learning applied to sequential detection.
    Guo C; Kuh A
    IEEE Trans Neural Netw; 1997; 8(2):278-87. PubMed ID: 18255632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks and chaos: construction, evaluation of chaotic networks, and prediction of chaos with multilayer feedforward networks.
    Bahi JM; Couchot JF; Guyeux C; Salomon M
    Chaos; 2012 Mar; 22(1):013122. PubMed ID: 22462998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reinforcement neuro-fuzzy combiner for multiobjective control.
    Lin CT; Chung IF
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):726-44. PubMed ID: 18252353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.
    Liu YJ; Tang L; Tong S; Chen CL; Li DJ
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):165-76. PubMed ID: 25438326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Technol Health Care; 2004; 12(6):425-38. PubMed ID: 15671597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive learning in tracking control based on the dual critic network design.
    Ni Z; He H; Wen J
    IEEE Trans Neural Netw Learn Syst; 2013 Jun; 24(6):913-28. PubMed ID: 24808473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reinforcement Learning Neural Network for Robotic Manipulator Control.
    Hu Y; Si B
    Neural Comput; 2018 Jul; 30(7):1983-2004. PubMed ID: 29652591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. R-POPTVR: a novel reinforcement-based POPTVR fuzzy neural network for pattern classification.
    Wong WC; Cho SY; Quek C
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1740-55. PubMed ID: 19770091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive balancing of exploration and exploitation around the edge of chaos in internal-chaos-based learning.
    Matsuki T; Shibata K
    Neural Netw; 2020 Dec; 132():19-29. PubMed ID: 32861145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks.
    Molter C; Salihoglu U; Bersini H
    Neural Comput; 2007 Jan; 19(1):80-110. PubMed ID: 17134318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical mechanics of structural and temporal credit assignment effects on learning in neural networks.
    Saito H; Katahira K; Okanoya K; Okada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051125. PubMed ID: 21728508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Policy improvement by a model-free Dyna architecture.
    Hwang KS; Lo CY
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):776-88. PubMed ID: 24808427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of learning parameters for CMAC-based adaptive critic learning.
    Lin CS; Kim H
    IEEE Trans Neural Netw; 1995; 6(3):642-7. PubMed ID: 18263349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.