These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18252624)

  • 1. Dynamic range and sensitivity adaptation in a silicon spiking neuron.
    Shin J; Koch C
    IEEE Trans Neural Netw; 1999; 10(5):1232-8. PubMed ID: 18252624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive neural coding dependent on the time-varying statistics of the somatic input current.
    Shin J; Koch C; Douglas R
    Neural Comput; 1999 Nov; 11(8):1893-913. PubMed ID: 10578037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds.
    Benda J; Maler L; Longtin A
    J Neurophysiol; 2010 Nov; 104(5):2806-20. PubMed ID: 21045213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon synaptic adaptation mechanisms for homeostasis and contrast gain control.
    Liu SC; Minch BA
    IEEE Trans Neural Netw; 2002; 13(6):1497-503. PubMed ID: 18244544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact silicon neuron circuit with spiking and bursting behaviour.
    Wijekoon JH; Dudek P
    Neural Netw; 2008; 21(2-3):524-34. PubMed ID: 18262751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
    Mitra S; Fusi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):32-42. PubMed ID: 23853161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon modeling of the Mihalaş-Niebur neuron.
    Folowosele F; Hamilton TJ; Etienne-Cummings R
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1915-27. PubMed ID: 21990331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI.
    Yu T; Sejnowski TJ; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2011 Oct; 5(5):420-9. PubMed ID: 22227949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic optimal control of single neuron spike trains.
    Iolov A; Ditlevsen S; Longtin A
    J Neural Eng; 2014 Aug; 11(4):046004. PubMed ID: 24891497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate.
    Stemmler M; Koch C
    Nat Neurosci; 1999 Jun; 2(6):521-7. PubMed ID: 10448216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing rate control of a neuron using a linear proportional-integral controller.
    Miranda-Domínguez O; Gonia J; Netoff TI
    J Neural Eng; 2010 Dec; 7(6):066004. PubMed ID: 20975212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 4-fJ/Spike Artificial Neuron in 65 nm CMOS Technology.
    Sourikopoulos I; Hedayat S; Loyez C; Danneville F; Hoel V; Mercier E; Cappy A
    Front Neurosci; 2017; 11():123. PubMed ID: 28360831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
    Indiveri G; Chicca E; Douglas R
    IEEE Trans Neural Netw; 2006 Jan; 17(1):211-21. PubMed ID: 16526488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic silicon neuron circuits.
    Indiveri G; Linares-Barranco B; Hamilton TJ; van Schaik A; Etienne-Cummings R; Delbruck T; Liu SC; Dudek P; Häfliger P; Renaud S; Schemmel J; Cauwenberghs G; Arthur J; Hynna K; Folowosele F; Saighi S; Serrano-Gotarredona T; Wijekoon J; Wang Y; Boahen K
    Front Neurosci; 2011; 5():73. PubMed ID: 21747754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analog VLSI implementation of resonate-and-fire neuron.
    Nakada K; Asai T; Hayashi H
    Int J Neural Syst; 2006 Dec; 16(6):445-56. PubMed ID: 17285690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic.
    Engel J; Schultens HA; Schild D
    Biophys J; 1999 Mar; 76(3):1310-9. PubMed ID: 10049314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A universal model for spike-frequency adaptation.
    Benda J; Herz AV
    Neural Comput; 2003 Nov; 15(11):2523-64. PubMed ID: 14577853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of firing patterns in fast-spiking cortical interneurons.
    Golomb D; Donner K; Shacham L; Shlosberg D; Amitai Y; Hansel D
    PLoS Comput Biol; 2007 Aug; 3(8):e156. PubMed ID: 17696606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.