These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18252822)

  • 1. Superinfection as a driver of genomic diversification in antigenically variant pathogens.
    Futse JE; Brayton KA; Dark MJ; Knowles DP; Palmer GH
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):2123-7. PubMed ID: 18252822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaplasma marginale superinfection attributable to pathogen strains with distinct genomic backgrounds.
    Vallejo Esquerra E; Herndon DR; Alpirez Mendoza F; Mosqueda J; Palmer GH
    Infect Immun; 2014 Dec; 82(12):5286-92. PubMed ID: 25287920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of the Antigenically Variable Major Surface Protein 2 in the Establishment of Superinfection during Natural Tick Transmission of Anaplasma marginale in Southern Ghana.
    Koku R; Futse JE; Morrison J; Brayton KA; Palmer GH; Noh SM
    Infect Immun; 2023 Apr; 91(4):e0050122. PubMed ID: 36877065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of variant diversity associated with a high prevalence of pathogen strain superinfection under conditions of natural transmission.
    Ueti MW; Tan Y; Broschat SL; Castañeda Ortiz EJ; Camacho-Nuez M; Mosqueda JJ; Scoles GA; Grimes M; Brayton KA; Palmer GH
    Infect Immun; 2012 Jul; 80(7):2354-60. PubMed ID: 22585962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigenic variation and transmission fitness as drivers of bacterial strain structure.
    Palmer GH; Brayton KA
    Cell Microbiol; 2013 Dec; 15(12):1969-75. PubMed ID: 23941262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinctly different msp2 pseudogene repertoires in Anaplasma marginale strains that are capable of superinfection.
    Rodríguez JL; Palmer GH; Knowles DP; Brayton KA
    Gene; 2005 Nov; 361():127-32. PubMed ID: 16202540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary Structural Variation in Anaplasma marginale Msp2 Efficiently Generates Immune Escape Variants.
    Graça T; Paradiso L; Broschat SL; Noh SM; Palmer GH
    Infect Immun; 2015 Nov; 83(11):4178-84. PubMed ID: 26259814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Anaplasma marginale strain superinfection with infection prevalence within tropical regions.
    Castañeda-Ortiz EJ; Ueti MW; Camacho-Nuez M; Mosqueda JJ; Mousel MR; Johnson WC; Palmer GH
    PLoS One; 2015; 10(3):e0120748. PubMed ID: 25793966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental Variation in a Duplicated
    Graça T; Ku PS; Silva MG; Turse JE; Hammac GK; Brown WC; Palmer GH; Brayton KA
    Infect Immun; 2019 Feb; 87(2):. PubMed ID: 30455197
    [No Abstract]   [Full Text] [Related]  

  • 10. Antigenic Variation in Bacterial Pathogens.
    Palmer GH; Bankhead T; Seifert HS
    Microbiol Spectr; 2016 Feb; 4(1):. PubMed ID: 26999387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis for Recombinatorial Permissiveness in the Generation of Anaplasma marginale Msp2 Antigenic Variants.
    Graça T; Silva MG; Kostyukova AS; Palmer GH
    Infect Immun; 2016 Oct; 84(10):2740-7. PubMed ID: 27400719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of antigenic variants via gene conversion: Evidence for recombination fitness selection at the locus level in Anaplasma marginale.
    Futse JE; Brayton KA; Nydam SD; Palmer GH
    Infect Immun; 2009 Aug; 77(8):3181-7. PubMed ID: 19487473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'Nothing is permanent but change'- antigenic variation in persistent bacterial pathogens.
    Palmer GH; Bankhead T; Lukehart SA
    Cell Microbiol; 2009 Dec; 11(12):1697-705. PubMed ID: 19709057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both Coinfection and Superinfection Drive Complex Anaplasma marginale Strain Structure in a Natural Transmission Setting.
    Koku R; Herndon DR; Avillan J; Morrison J; Futse JE; Palmer GH; Brayton KA; Noh SM
    Infect Immun; 2021 Oct; 89(11):e0016621. PubMed ID: 34338549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents.
    Gupta S; Ferguson N; Anderson R
    Science; 1998 May; 280(5365):912-5. PubMed ID: 9572737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression patterns of Anaplasma marginale Msp2 variants change in response to growth in cattle, and tick cells versus mammalian cells.
    Chávez AS; Felsheim RF; Kurtti TJ; Ku PS; Brayton KA; Munderloh UG
    PLoS One; 2012; 7(4):e36012. PubMed ID: 22558307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superinfection Exclusion of the Ruminant Pathogen Anaplasma marginale in Its Tick Vector Is Dependent on the Time between Exposures to the Strains.
    Noh SM; Dark MJ; Reif KE; Ueti MW; Kappmeyer LS; Scoles GA; Palmer GH; Brayton KA
    Appl Environ Microbiol; 2016 Jun; 82(11):3217-3224. PubMed ID: 26994084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tick-borne transmission of two genetically distinct Anaplasma marginale strains following superinfection of the mammalian reservoir host.
    Leverich CK; Palmer GH; Knowles DP; Brayton KA
    Infect Immun; 2008 Sep; 76(9):4066-70. PubMed ID: 18573892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection for simple major surface protein 2 variants during Anaplasma marginale transmission to immunologically naïve animals.
    Palmer GH; Futse JE; Leverich CK; Knowles DP; Rurangirwa FR; Brayton KA
    Infect Immun; 2007 Mar; 75(3):1502-6. PubMed ID: 17178787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene conversion is a convergent strategy for pathogen antigenic variation.
    Palmer GH; Brayton KA
    Trends Parasitol; 2007 Sep; 23(9):408-13. PubMed ID: 17662656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.