These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18253260)

  • 1. Wavelength dependence of the Raman cross section for liquid water.
    Faris GW; Copeland RA
    Appl Opt; 1997 Apr; 36(12):2686-8. PubMed ID: 18253260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman scattering by pure water and seawater.
    Bartlett JS; Voss KJ; Sathyendranath S; Vodacek A
    Appl Opt; 1998 May; 37(15):3324-32. PubMed ID: 18273291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of Adenine Raman Spectrum on Excitation Laser Wavelength: Comparison between Experiment and Theoretical Simulations.
    Nergui N; Chen MJ; Wang JK; Wang YL; Hsing CR; Wei CM; Takahashi K
    J Phys Chem A; 2016 Oct; 120(41):8114-8122. PubMed ID: 27689391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.
    Demos SG; Raman RN; Yang ST; Negres RA; Schaffers KI; Henesian MA
    Opt Express; 2011 Oct; 19(21):21050-9. PubMed ID: 21997113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refractive-index matching avoids local field corrections and scattering bias in solid-state Na2SO4 ultraviolet Raman cross-section measurements.
    Wang L; Asher SA
    Appl Spectrosc; 2012 Feb; 66(2):157-62. PubMed ID: 22553775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water Raman normalization of airborne laser fluorosensor measurements: a computer model study.
    Poole LR; Esaias WE
    Appl Opt; 1982 Oct; 21(20):3756-61. PubMed ID: 20396311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.
    Rivero C; Stegeman R; Couzi M; Talaga D; Cardinal T; Richardson K; Stegeman G
    Opt Express; 2005 Jun; 13(12):4759-69. PubMed ID: 19495394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete calibration of a Thomson scattering spectrometer system by rotational Raman scattering in H(2).
    Flora F; Giudicotti L
    Appl Opt; 1987 Sep; 26(18):4001-8. PubMed ID: 20490175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiwavelength Raman Spectroscopic Analysis of Superficial Iron-Chromium Oxides Generated Using Laser Irradiation.
    Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I
    Appl Spectrosc; 2018 Jun; 72(6):879-885. PubMed ID: 29381100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].
    Jia LH; Wang YD; Sun CL; Li ZL; Li ZW; Wang LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2686-8. PubMed ID: 20038038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concept for maritime near-surface surveillance using water Raman scattering.
    Shokair IR; Johnson MS; Schmitt RL; Sickafoose SM
    Appl Opt; 2018 Jun; 57(17):4858-4864. PubMed ID: 30118103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute calibration of LIDAR Thomson scattering systems by rotational Raman scattering.
    Scannell R; Beurskens M; Kempenaars M; Naylor G; Walsh M; O'Gorman T; Pasqualotto R
    Rev Sci Instrum; 2010 Apr; 81(4):045107. PubMed ID: 20441368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals.
    Baker JA; Kelley DF; Kelley AM
    J Chem Phys; 2013 Jul; 139(2):024702. PubMed ID: 23862954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering.
    Zhao L; Jensen L; Schatz GC
    J Am Chem Soc; 2006 Mar; 128(9):2911-9. PubMed ID: 16506770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrally resolved absolute fluorescence cross sections for bacillus spores.
    Faris GW; Copeland RA; Mortelmans K; Bronk BV
    Appl Opt; 1997 Feb; 36(4):958-67. PubMed ID: 18250761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach.
    Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I
    Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ measurements of Raman scattering in clear ocean water.
    Hu C; Voss KJ
    Appl Opt; 1997 Sep; 36(27):6962-7. PubMed ID: 18259568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the effect of laser excitation wavelength on signal recovery with deep tissue transmission Raman spectroscopy.
    Ghita A; Matousek P; Stone N
    Analyst; 2016 Oct; 141(20):5738-5746. PubMed ID: 27464358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar.
    Spinhirne JD; Chudamani S; Cavanaugh JF; Bufton JL
    Appl Opt; 1997 May; 36(15):3475-90. PubMed ID: 18253366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.