These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18253271)

  • 21. Wave-front reconstruction using a Shack-Hartmann sensor.
    Lane RG; Tallon M
    Appl Opt; 1992 Nov; 31(32):6902-8. PubMed ID: 20733929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers.
    Jeong TM; Ko DK; Lee J
    Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates.
    Andersen TB
    Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of phase mode components in terms of local wave-front slopes: an analytical approach.
    Acosta E; Bará S; Rama MA; Ríos S
    Opt Lett; 1995 May; 20(10):1083-5. PubMed ID: 19859432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase mask coded with the superposition of four Zernike polynomials for extending the depth of field in an imaging system.
    Palillero-Sandoval O; Félix Aguilar J; Berriel-Valdos LR
    Appl Opt; 2014 Jun; 53(18):4033-8. PubMed ID: 24979437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving capacity of the circular Zernike polynomials.
    Svechnikov MV; Chkhalo NI; Toropov MN; Salashchenko NN
    Opt Express; 2015 Jun; 23(11):14677-94. PubMed ID: 26072827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces.
    Hou X; Wu F; Yang L; Wu S; Chen Q
    Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-color multi-wave lateral shearing interferometry for segmented wave-front measurements.
    Velghe SM; Guérineau N; Haïdar R; Toulon B; Demoustier S; Primot J
    Opt Express; 2006 Oct; 14(21):9699-708. PubMed ID: 19529360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytical method for the transformation of Zernike polynomial coefficients for scaled, rotated, and translated pupils.
    Li L; Zhang B; Xu Y; Wang D
    Appl Opt; 2018 Dec; 57(34):F22-F30. PubMed ID: 30645277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-precision method for submicron-aperture fiber point-diffraction wavefront measurement.
    Wang D; Xu Y; Liang R; Kong M; Zhao J; Zhang B; Li W
    Opt Express; 2016 Apr; 24(7):7079-90. PubMed ID: 27137002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust fitting of Zernike polynomials to noisy point clouds defined over connected domains of arbitrary shape.
    Ibañez DR; Gómez-Pedrero JA; Alonso J; Quiroga JA
    Opt Express; 2016 Mar; 24(6):5918-33. PubMed ID: 27136788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modal wavefront reconstruction for radial shearing interferometer with lateral shear.
    Gu N; Huang L; Yang Z; Luo Q; Rao C
    Opt Lett; 2011 Sep; 36(18):3693-5. PubMed ID: 21931435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape.
    Upton R; Ellerbroek B
    Opt Lett; 2004 Dec; 29(24):2840-2. PubMed ID: 15645798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absolute planarity with three-flat test: an iterative approach with Zernike polynomials.
    Vannoni M; Molesini G
    Opt Express; 2008 Jan; 16(1):340-54. PubMed ID: 18521166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Solving resolution of diffraction gratings using coefficients of Zernike polynomials].
    Yu HL; Qi XD; Bayanheshig ; Tang YG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):264-7. PubMed ID: 22497173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization of surface figure by the use of Zernike polynomials.
    Evans CJ; Parks RE; Sullivan PJ; Taylor JS
    Appl Opt; 1995 Dec; 34(34):7815-9. PubMed ID: 21068872
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noise propagation in wave-front sensing with phase diversity.
    Meynadier L; Michau V; Velluet MT; Conan JM; Mugnier LM; Rousset G
    Appl Opt; 1999 Aug; 38(23):4967-79. PubMed ID: 18323986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave front sensor-less adaptive optics: a model-based approach using sphere packings.
    Booth M
    Opt Express; 2006 Feb; 14(4):1339-52. PubMed ID: 19503457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variational solution for modal wave-front projection functions of minimum-error norm.
    Solomon CJ; Loos GC; Rios S
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jul; 18(7):1519-22. PubMed ID: 11444543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.