These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18253369)

  • 21. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure C(2)H(6)/O(2)/N(2) flames.
    Carter CD; King GB; Laurendeau NM
    Appl Opt; 1992 Apr; 31(10):1511-22. PubMed ID: 20720785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame.
    Petersson P; Olofsson J; Brackman C; Seyfried H; Zetterberg J; Richter M; Aldén M; Linne MA; Cheng RK; Nauert A; Geyer D; Dreizler A
    Appl Opt; 2007 Jul; 46(19):3928-36. PubMed ID: 17571129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.
    Zhang J; Shaddix CR; Schefer RW
    Rev Sci Instrum; 2011 Jul; 82(7):074101. PubMed ID: 21806201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-point time-series measurementsof hydroxyl concentration in a turbulent nonpremixed flame.
    Zhang J; King GB; Laurendeau NM; Renfro MW
    Appl Opt; 2007 Aug; 46(23):5742-54. PubMed ID: 17694123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous high-speed measurement of temperature and lifetime-corrected OH laser-induced fluorescence in unsteady flames.
    Meyer TR; King GB; Gluesenkamp M; Gord JR
    Opt Lett; 2007 Aug; 32(15):2221-3. PubMed ID: 17671590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.
    Chaudhuri S; Wu F; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033005. PubMed ID: 24125342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames.
    Wang Z; Stamatoglou P; Li Z; Aldén M; Richter M
    Opt Express; 2017 Nov; 25(24):30214-30228. PubMed ID: 29221053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Numerical Simulation of Head-On Quenching of Statistically Planar Turbulent Premixed Methane-Air Flames Using a Detailed Chemical Mechanism.
    Lai J; Klein M; Chakraborty N
    Flow Turbul Combust; 2018; 101(4):1073-1091. PubMed ID: 30613187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-point, high-repetition-rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise.
    Wang GH; Clemens NT; Varghese PL
    Appl Opt; 2005 Nov; 44(31):6741-51. PubMed ID: 16270563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.
    Reichardt TA; Klassen MS; King GB; Laurendeau NM
    Appl Opt; 1996 Apr; 35(12):2125-39. PubMed ID: 21085341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature measurements of the hydroxyl radical and molecular nitrogen in premixed, laminar flames by laser techniques.
    Bechtel JH
    Appl Opt; 1979 Jul; 18(13):2100-6. PubMed ID: 20212620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion.
    Allen MG; McManus KR; Sonnenfroh DM; Paul PH
    Appl Opt; 1995 Sep; 34(27):6287-300. PubMed ID: 21060473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames.
    Long MB; Levin PS; Fourguette DC
    Opt Lett; 1985 Jun; 10(6):267-9. PubMed ID: 19724416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracavity technique for improved Raman/ Rayleigh imaging in flames.
    Marran DF; Frank JH; Long MB; Stårner SH; Bilger RW
    Opt Lett; 1995 Apr; 20(7):791-3. PubMed ID: 19859331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic errors in optical-flow velocimetry for turbulent flows and flames.
    Fielding J; Long MB; Fielding G; Komiyama M
    Appl Opt; 2001 Feb; 40(6):757-64. PubMed ID: 18357055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative temperature measurements in high-pressure flames with multiline NO-LIF thermometry.
    Lee T; Bessler WG; Kronemayer H; Schulz C; Jeffries JB
    Appl Opt; 2005 Nov; 44(31):6718-28. PubMed ID: 16270561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OH-Planar Laser-Induced Fluorescence Measurements in Laminar Diffusion Flames of
    Huang Y; Du H; Wang W; Shi D; Wu Y; Li B; Zhou L
    ACS Omega; 2021 Sep; 6(38):24515-24525. PubMed ID: 34604633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional imaging of molecular hydrogen in H(2)-air diffusion flames using two-photon laser-induced fluorescence.
    Lempert W; Diskin G; Kumar V; Glesk I; Miles R
    Opt Lett; 1991 May; 16(9):660-2. PubMed ID: 19774030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature measurements in spray flames by spontaneous Raman scattering.
    Karpetis AN; Gomez A
    Opt Lett; 1996 May; 21(10):704-6. PubMed ID: 19876131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.