BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18254385)

  • 1. A microfluidic system for dynamic yeast cell imaging.
    Lee PJ; Helman NC; Lim WA; Hung PJ
    Biotechniques; 2008 Jan; 44(1):91-5. PubMed ID: 18254385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPLIFF: A Single-Cell Method to Map Protein-Protein Interactions in Time and Space.
    Dünkler A; Rösler R; Kestler HA; Moreno-Andrés D; Johnsson N
    Methods Mol Biol; 2015; 1346():151-68. PubMed ID: 26542721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein expression patterns of the yeast mating response.
    Yuan H; Zhang R; Shao B; Wang X; Ouyang Q; Hao N; Luo C
    Integr Biol (Camb); 2016 Jun; 8(6):712-9. PubMed ID: 27177258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Saccharomyces cerevisiae Wss1 protein is only present in mother cells.
    van Heusden GP; Steensma HY
    FEMS Microbiol Lett; 2008 May; 282(1):100-4. PubMed ID: 18336552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus.
    Park MC; Hur JY; Kwon KW; Park SH; Suh KY
    Lab Chip; 2006 Aug; 6(8):988-94. PubMed ID: 16874367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of aggregate load and pattern in living yeast cells by flow cytometry.
    Hidalgo IH; Fleming T; Eckstein V; Herzig S; Nawroth PP; Tyedmers J
    Biotechniques; 2016; 61(3):137-48. PubMed ID: 27625208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graded mode of transcriptional induction in yeast pheromone signalling revealed by single-cell analysis.
    Poritz MA; Malmstrom S; Kim MK; Rossmeissl PJ; Kamb A
    Yeast; 2001 Oct; 18(14):1331-8. PubMed ID: 11571757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in
    Bheda P; Aguilar-Gómez D; Kukhtevich I; Becker J; Charvin G; Kirmizis A; Schneider R
    STAR Protoc; 2020 Dec; 1(3):100228. PubMed ID: 33377118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry.
    Mateus C; Avery SV
    Yeast; 2000 Oct; 16(14):1313-23. PubMed ID: 11015728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chemostat array enables the spatio-temporal analysis of the yeast proteome.
    Dénervaud N; Becker J; Delgado-Gonzalo R; Damay P; Rajkumar AS; Unser M; Shore D; Naef F; Maerkl SJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15842-7. PubMed ID: 24019481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of putative ammonium exporters Ato with detergent-resistant compartments of plasma membrane during yeast colony development: pH affects Ato1p localisation in patches.
    Ricicová M; Kucerová H; Váchová L; Palková Z
    Biochim Biophys Acta; 2007 May; 1768(5):1170-8. PubMed ID: 17395151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent labeling of yeast.
    Baggett JJ; Shaw JD; Sciambi CJ; Watson HA; Wendland B
    Curr Protoc Cell Biol; 2003 Nov; Chapter 4():Unit 4.13. PubMed ID: 18228435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1.
    Straede A; Heinisch JJ
    FEBS Lett; 2007 Sep; 581(23):4495-500. PubMed ID: 17761172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative and dynamic assay of single cell chemotaxis.
    Lee SS; Horvath P; Pelet S; Hegemann B; Lee LP; Peter M
    Integr Biol (Camb); 2012 Apr; 4(4):381-90. PubMed ID: 22230969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular localization and functional expression of the glycerol uptake protein 1 (GUP1) of Saccharomyces cerevisiae tagged with green fluorescent protein.
    Bleve G; Zacheo G; Cappello MS; Dellaglio F; Grieco F
    Biochem J; 2005 Aug; 390(Pt 1):145-55. PubMed ID: 15813700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale production of membrane proteins in Saccharomyces cerevisiae: using a green fluorescent protein fusion strategy in the production of membrane proteins.
    Drew D; Kim H
    Methods Mol Biol; 2012; 866():209-16. PubMed ID: 22454126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.
    Pilát Z; Jonáš A; Ježek J; Zemánek P
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative and dynamic analyses of G protein-coupled receptor signaling in yeast using Fus1, enhanced green fluorescence protein (EGFP), and His3 fusion protein.
    Ishii J; Matsumura S; Kimura S; Tatematsu K; Kuroda S; Fukuda H; Kondo A
    Biotechnol Prog; 2006; 22(4):954-60. PubMed ID: 16889369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of nonselective bulk autophagy in S. cerevisiae using Pgk1-GFP.
    Welter E; Thumm M; Krick R
    Autophagy; 2010 Aug; 6(6):794-7. PubMed ID: 20523132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.