These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 18254627)
1. One-step controllable synthesis for high-quality ultrafine metal oxide semiconductor nanocrystals via a separated two-phase hydrolysis reaction. Tang K; Zhang J; Yan W; Li Z; Wang Y; Yang W; Xie Z; Sun T; Fuchs H J Am Chem Soc; 2008 Feb; 130(8):2676-80. PubMed ID: 18254627 [TBL] [Abstract][Full Text] [Related]
2. Green chemistry for large-scale synthesis of semiconductor quantum dots. Liu JH; Fan JB; Gu Z; Cui J; Xu XB; Liang ZW; Luo SL; Zhu MQ Langmuir; 2008 May; 24(10):5241-4. PubMed ID: 18399665 [TBL] [Abstract][Full Text] [Related]
3. Lamellar envelopes of semiconductor nanocrystals. Lee A; Coombs NA; Gourevich I; Kumacheva E; Scholes GD J Am Chem Soc; 2009 Jul; 131(29):10182-8. PubMed ID: 19569680 [TBL] [Abstract][Full Text] [Related]
4. A general synthesis of high-quality inorganic nanocrystals via a two-phase method. Zhao N; Nie W; Mao J; Yang M; Wang D; Lin Y; Fan Y; Zhao Z; Wei H; Ji X Small; 2010 Nov; 6(22):2558-65. PubMed ID: 20963794 [TBL] [Abstract][Full Text] [Related]
5. High photoluminescence quantum yield of TiO2 nanocrystals prepared using an alcohothermal method. Li Y; Song C; Wang Y; Wei Y; Wei Y; Hu Y Luminescence; 2007; 22(6):540-5. PubMed ID: 17768709 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. de Mello Donegá C; Liljeroth P; Vanmaekelbergh D Small; 2005 Dec; 1(12):1152-62. PubMed ID: 17193409 [TBL] [Abstract][Full Text] [Related]
7. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Kwon SG; Hyeon T Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of platy apatite nanocrystals loaded with TiO2 nanoparticles by two-step emulsion method and their photocatalytic activity. Iwasaki M; Miyamoto Y; Ito S; Furuzono T; Park WK J Colloid Interface Sci; 2008 Oct; 326(2):537-40. PubMed ID: 18703202 [TBL] [Abstract][Full Text] [Related]
10. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. Joo J; Yu T; Kim YW; Park HM; Wu F; Zhang JZ; Hyeon T J Am Chem Soc; 2003 May; 125(21):6553-7. PubMed ID: 12785795 [TBL] [Abstract][Full Text] [Related]
11. ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. Zeng H; Cai W; Liu P; Xu X; Zhou H; Klingshirn C; Kalt H ACS Nano; 2008 Aug; 2(8):1661-70. PubMed ID: 19206370 [TBL] [Abstract][Full Text] [Related]
12. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. Prakash A; Zhu H; Jones CJ; Benoit DN; Ellsworth AZ; Bryant EL; Colvin VL ACS Nano; 2009 Aug; 3(8):2139-46. PubMed ID: 19594166 [TBL] [Abstract][Full Text] [Related]
13. Core/Shell semiconductor nanocrystals. Reiss P; Protière M; Li L Small; 2009 Feb; 5(2):154-68. PubMed ID: 19153991 [TBL] [Abstract][Full Text] [Related]
14. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties. Polavarapu L; Xu QH Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622 [TBL] [Abstract][Full Text] [Related]
15. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. Rempel JY; Bawendi MG; Jensen KF J Am Chem Soc; 2009 Apr; 131(12):4479-89. PubMed ID: 19275244 [TBL] [Abstract][Full Text] [Related]
16. Germania nanoparticles and nanocrystals at room temperature in water and aqueous lysine sols. Davis TM; Snyder MA; Tsapatsis M Langmuir; 2007 Dec; 23(25):12469-72. PubMed ID: 17979306 [TBL] [Abstract][Full Text] [Related]
17. A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chane-Ching JY; Cobo F; Aubert D; Harvey HG; Airiau M; Corma A Chemistry; 2005 Jan; 11(3):979-87. PubMed ID: 15612054 [TBL] [Abstract][Full Text] [Related]
18. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. Xie R; Rutherford M; Peng X J Am Chem Soc; 2009 Apr; 131(15):5691-7. PubMed ID: 19331353 [TBL] [Abstract][Full Text] [Related]
20. Controlled synthesis and luminescence of semiconductor nanorods. Li P; Wang L; Wang L; Li Y Chemistry; 2008; 14(19):5951-6. PubMed ID: 18491306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]