BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18254963)

  • 1. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene.
    Odronitz F; Kollmar M
    BMC Mol Biol; 2008 Feb; 9():21. PubMed ID: 18254963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shared gene structures and clusters of mutually exclusive spliced exons within the metazoan muscle myosin heavy chain genes.
    Kollmar M; Hatje K
    PLoS One; 2014; 9(2):e88111. PubMed ID: 24498429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splice-junction elements and intronic sequences regulate alternative splicing of the Drosophila myosin heavy chain gene transcript.
    Standiford DM; Davis MB; Sun W; Emerson CP
    Genetics; 1997 Oct; 147(2):725-41. PubMed ID: 9335608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.
    Davis MB; Dietz J; Standiford DM; Emerson CP
    Genetics; 1998 Nov; 150(3):1105-14. PubMed ID: 9799262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts.
    Standiford DM; Sun WT; Davis MB; Emerson CP
    Genetics; 2001 Jan; 157(1):259-71. PubMed ID: 11139507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons.
    George EL; Ober MB; Emerson CP
    Mol Cell Biol; 1989 Jul; 9(7):2957-74. PubMed ID: 2506434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting mutually exclusive spliced exons based on exon length, splice site and reading frame conservation, and exon sequence homology.
    Pillmann H; Hatje K; Odronitz F; Hammesfahr B; Kollmar M
    BMC Bioinformatics; 2011 Jun; 12():270. PubMed ID: 21718515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular organization and alternative splicing in zipper, the gene that encodes the Drosophila non-muscle myosin II heavy chain.
    Mansfield SG; al-Shirawi DY; Ketchum AS; Newbern EC; Kiehart DP
    J Mol Biol; 1996 Jan; 255(1):98-109. PubMed ID: 8568878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the 5' end of the Drosophila muscle myosin heavy chain gene. Alternatively spliced transcripts initiate at a single site and intron locations are conserved compared to myosin genes of other organisms.
    Wassenberg DR; Kronert WA; O'Donnell PT; Bernstein SI
    J Biol Chem; 1987 Aug; 262(22):10741-7. PubMed ID: 3038896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod.
    Strehler EE; Strehler-Page MA; Perriard JC; Periasamy M; Nadal-Ginard B
    J Mol Biol; 1986 Aug; 190(3):291-317. PubMed ID: 3783701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scallop striated and smooth muscle myosin heavy-chain isoforms are produced by alternative RNA splicing from a single gene.
    Nyitray L; Jancsó A; Ochiai Y; Gráf L; Szent-Györgyi AG
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12686-90. PubMed ID: 7809102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods.
    Brites D; Brena C; Ebert D; Du Pasquier L
    Evolution; 2013 Oct; 67(10):2999-3011. PubMed ID: 24094349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti.
    Salvemini M; Mauro U; Lombardo F; Milano A; Zazzaro V; Arcà B; Polito LC; Saccone G
    BMC Evol Biol; 2011 Feb; 11():41. PubMed ID: 21310052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA.
    Hodges D; Cripps RM; O'Connor ME; Bernstein SI
    Genetics; 1999 Jan; 151(1):263-76. PubMed ID: 9872965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking the evolution of alternatively spliced exons within the Dscam family.
    Crayton ME; Powell BC; Vision TJ; Giddings MC
    BMC Evol Biol; 2006 Feb; 6():16. PubMed ID: 16483367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle-specific accumulation of Drosophila myosin heavy chains: a splicing mutation in an alternative exon results in an isoform substitution.
    Kronert WA; Edwards KA; Roche ES; Wells L; Bernstein SI
    EMBO J; 1991 Sep; 10(9):2479-88. PubMed ID: 1907912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive expansions of Dscam splicing diversity via staggered homologous recombination during arthropod evolution.
    Lee C; Kim N; Roy M; Graveley BR
    RNA; 2010 Jan; 16(1):91-105. PubMed ID: 19934230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of the functional Myosin heavy chain 2b isoform in equine skeletal muscles.
    Chikuni K; Muroya S; Nakajima I
    Zoolog Sci; 2004 May; 21(5):589-96. PubMed ID: 15170063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative exon-encoding regions of Locusta migratoria muscle myosin modulate the pH dependence of ATPase activity.
    Li J; Lu Z; He J; Chen Q; Wang X; Kang L; Li XD
    Insect Mol Biol; 2016 Dec; 25(6):689-700. PubMed ID: 27440416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis.
    Zhang S; Bernstein SI
    Mech Dev; 2001 Mar; 101(1-2):35-45. PubMed ID: 11231057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.