These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 18255136)
1. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. San Thian E; Ahmad Z; Huang J; Edirisinghe MJ; Jayasinghe SN; Ireland DC; Brooks RA; Rushton N; Bonfield W; Best SM Biomaterials; 2008 Apr; 29(12):1833-43. PubMed ID: 18255136 [TBL] [Abstract][Full Text] [Related]
2. Bone tissue engineering on patterned collagen films: an in vitro study. Ber S; Torun Köse G; Hasirci V Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172 [TBL] [Abstract][Full Text] [Related]
3. The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts. Thian ES; Ahmad Z; Huang J; Edirisinghe MJ; Jayasinghe SN; Ireland DC; Brooks RA; Rushton N; Bonfield W; Best SM Acta Biomater; 2010 Mar; 6(3):750-5. PubMed ID: 19671453 [TBL] [Abstract][Full Text] [Related]
4. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Chou YF; Huang W; Dunn JC; Miller TA; Wu BM Biomaterials; 2005 Jan; 26(3):285-95. PubMed ID: 15262470 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Kalbacova M; Rezek B; Baresova V; Wolf-Brandstetter C; Kromka A Acta Biomater; 2009 Oct; 5(8):3076-85. PubMed ID: 19433140 [TBL] [Abstract][Full Text] [Related]
6. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
7. Beads of collagen-nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular behavior in MG63 osteoblast-like cells. Tsai SW; Hsu FY; Chen PL Acta Biomater; 2008 Sep; 4(5):1332-41. PubMed ID: 18468966 [TBL] [Abstract][Full Text] [Related]
8. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Erisken C; Kalyon DM; Wang H Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Garreta E; Gasset D; Semino C; Borrós S Biomol Eng; 2007 Feb; 24(1):75-80. PubMed ID: 16846750 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
12. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Haimi S; Gorianc G; Moimas L; Lindroos B; Huhtala H; Räty S; Kuokkanen H; Sándor GK; Schmid C; Miettinen S; Suuronen R Acta Biomater; 2009 Oct; 5(8):3122-31. PubMed ID: 19428318 [TBL] [Abstract][Full Text] [Related]
13. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings. Wang J; de Boer J; de Groot K J Biomed Mater Res A; 2009 Sep; 90(3):664-70. PubMed ID: 18563812 [TBL] [Abstract][Full Text] [Related]
14. Directional alignment of MG63 cells on polymer surfaces containing point microstructures. Mills CA; Fernandez JG; Martinez E; Funes M; Engel E; Errachid A; Planell J; Samitier J Small; 2007 May; 3(5):871-9. PubMed ID: 17394283 [TBL] [Abstract][Full Text] [Related]
15. Proliferation and differentiation of osteoblast-like cells on apatite-wollastonite/polyethylene composites. Rea SM; Brooks RA; Best SM; Kokubo T; Bonfield W Biomaterials; 2004 Aug; 25(18):4503-12. PubMed ID: 15046941 [TBL] [Abstract][Full Text] [Related]
16. A thin carbon-fiber web as a scaffold for bone-tissue regeneration. Aoki K; Usui Y; Narita N; Ogiwara N; Iashigaki N; Nakamura K; Kato H; Sano K; Ogiwara N; Kametani K; Kim C; Taruta S; Kim YA; Endo M; Saito N Small; 2009 Jul; 5(13):1540-6. PubMed ID: 19334009 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization and cytocompatibility of three chitosan/polycation composite membranes for guided bone regeneration. Zheng Z; Wei Y; Wang G; Gong Y; Zhang X J Biomater Appl; 2009 Sep; 24(3):209-29. PubMed ID: 18987023 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation of osteoblasts by substrate microstructural features. Zinger O; Zhao G; Schwartz Z; Simpson J; Wieland M; Landolt D; Boyan B Biomaterials; 2005 May; 26(14):1837-47. PubMed ID: 15576158 [TBL] [Abstract][Full Text] [Related]
19. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629 [TBL] [Abstract][Full Text] [Related]
20. Improved cellular response of osteoblast cells using recombinant human osteopontin protein produced by Escherichia coli. Jang JH; Kim JH Biotechnol Lett; 2005 Nov; 27(22):1767-70. PubMed ID: 16314968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]