BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18255180)

  • 1. Transmission of Chlamydophila pneumoniae from dendritic cells to macrophages does not require cell-to-cell contact in vitro.
    Wittkop U; Peppmueller M; Njau F; Leibold W; Klos A; Krausse-Opatz B; Hudson AP; Zeidler H; Haller H; Wagner AD
    J Microbiol Methods; 2008 Mar; 72(3):288-95. PubMed ID: 18255180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of Chlamydophila pneumoniae in human monocyte-derived dendritic cells: long lasting infection.
    Wittkop U; Krausse-Opatz B; Gust TC; Kirsch T; Hollweg G; Köhler L; Zenke M; Gérard HC; Hudson AP; Zeidler H; Wagner AD
    Microb Pathog; 2006 Mar; 40(3):101-9. PubMed ID: 16427247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro neutralization of tumor necrosis factor-alpha during Chlamydia pneumoniae infection impairs dendritic cells maturation/function and increases chlamydial progeny.
    Njau F; Wittkop U; Rohde M; Haller H; Klos A; Wagner AD
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):215-25. PubMed ID: 19281567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of bacterial genes and induction of INF-gamma in human myeloid dendritic cells during persistent infection with Chlamydophila pneumoniae.
    Kis Z; Treso B; Burian K; Endresz V; Pallinger E; Nagy A; Toth A; Takacs M; Falus A; Gonczol E
    FEMS Immunol Med Microbiol; 2008 Apr; 52(3):324-34. PubMed ID: 18312581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia pneumoniae infection of alveolar macrophages: a model.
    Haranaga S; Yamaguchi H; Ikejima H; Friedman H; Yamamoto Y
    J Infect Dis; 2003 Apr; 187(7):1107-15. PubMed ID: 12660925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tobacco smoke induces persistent infection of Chlamydophila pneumoniae in HEp-2 cells.
    Wiedeman JA; Kaul R; Heuer LS; Thao NN; Pinkerton KE; Wenman WM
    Microb Pathog; 2004 Sep; 37(3):141-8. PubMed ID: 15351037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth in vascular cells and cytokine production by Chlamydia pneumoniae.
    Gaydos CA
    J Infect Dis; 2000 Jun; 181 Suppl 3():S473-8. PubMed ID: 10839742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription, expression, localization and immunoreactivity of Chlamydophila pneumoniae Phospholipase D protein.
    Ciervo A; Mancini F; Cassone A
    Microb Pathog; 2007; 43(2-3):96-105. PubMed ID: 17570631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of Chlamydia pneumoniae in cultured human macrophages and HL cells: comparison of real-time PCR, immunofluorescence and ELISA methods.
    Poikonen K; Lajunen T; Silvennoinen-Kassinen S; Leinonen M; Saikku P
    APMIS; 2010 Jan; 118(1):45-8. PubMed ID: 20041870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitric oxide on the growth of Chlamydophila pneumoniae.
    Carratelli CR; Rizzo A; Paolillo R; Catania MR; Catalanotti P; Rossano F
    Can J Microbiol; 2005 Nov; 51(11):941-7. PubMed ID: 16333333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydophila pneumoniae attachment and infection in low proteoglycan expressing human lymphoid Jurkat cells.
    Kobayashi M; Ishida K; Matsuo J; Nakamura S; Nagasawa A; Motohashi K; Yao T; Hirai I; Yamamoto Y; Suzuki H; Shimizu C; Matsuno K; Yamaguchi H
    Microb Pathog; 2011 Sep; 51(3):209-16. PubMed ID: 21511028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells.
    Gérard HC; Fomicheva E; Whittum-Hudson JA; Hudson AP
    Microb Pathog; 2008 Apr; 44(4):279-85. PubMed ID: 17997273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tobacco smoke induces a persistent, but recoverable state in Chlamydia pneumoniae infection of human endothelial cells.
    Wiedeman JA; Kaul R; Heuer LS; Thao NN; Pinkerton KE; Wenman WM
    Microb Pathog; 2005; 39(5-6):197-204. PubMed ID: 16271847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective cyclooxygenase inhibitors prevent the growth of Chlamydia pneumoniae in HL cells.
    Yan Y; Silvennoinen-Kassinen S; Törmäkangas L; Leinonen M; Saikku P
    Int J Antimicrob Agents; 2008 Jul; 32(1):78-83. PubMed ID: 18524544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells.
    Wolf K; Fischer E; Hackstadt T
    Infect Immun; 2005 Aug; 73(8):4560-70. PubMed ID: 16040967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of gene expression in penicillin G induced persistence of Chlamydia pneumoniae.
    Di Pietro M; Tramonti A; De Santis F; De Biase D; Schiavoni G; Filardo S; Zagaglia C; Sessa R
    J Biol Regul Homeost Agents; 2012; 26(2):277-84. PubMed ID: 22824742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia pneumoniae stimulates the proliferation of HUVEC through the induction of VEGF by THP-1.
    Carratelli CR; Paolillo R; Rizzo A
    Int Immunopharmacol; 2007 Mar; 7(3):287-94. PubMed ID: 17276886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcript profile of persistent Chlamydophila (Chlamydia) pneumoniae in vitro depends on the means by which persistence is induced.
    Klos A; Thalmann J; Peters J; Gérard HC; Hudson AP
    FEMS Microbiol Lett; 2009 Feb; 291(1):120-6. PubMed ID: 19077059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of in vitro chlamydial cultures in low-oxygen atmospheres.
    Juul N; Jensen H; Hvid M; Christiansen G; Birkelund S
    J Bacteriol; 2007 Sep; 189(18):6723-6. PubMed ID: 17631631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydia pneumoniae in vitro and in vivo: a critical evaluation of in situ detection methods.
    Meijer A; Roholl PJ; Gielis-Proper SK; Meulenberg YF; Ossewaarde JM
    J Clin Pathol; 2000 Dec; 53(12):904-10. PubMed ID: 11265174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.