These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18255326)

  • 1. Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis.
    Zolotarev AS; Unnikrishnan M; Shmukler BE; Clark JS; Vandorpe DH; Grigorieff N; Rubin EJ; Alper SL
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Mar; 149(3):255-66. PubMed ID: 18255326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis.
    Sharma AK; Ye L; Baer CE; Shanmugasundaram K; Alber T; Alper SL; Rigby AC
    J Biol Chem; 2011 Mar; 286(10):8534-8544. PubMed ID: 21190940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR assignment and secondary structure of the STAS domain of Rv1739c, a putative sulfate transporter of Mycobacterium tuberculosis.
    Sharma AK; Ye L; Zolotarev AS; Alper SL; Rigby AC
    Biomol NMR Assign; 2009 Jun; 3(1):99-102. PubMed ID: 19636956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine nucleotides differentially modulate backbone dynamics of the STAS domain of the SulP/SLC26 transport protein Rv1739c of Mycobacterium tuberculosis.
    Sharma AK; Ye L; Alper SL; Rigby AC
    FEBS J; 2012 Feb; 279(3):420-36. PubMed ID: 22118659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins.
    Sirko A; Zatyka M; Sadowy E; Hulanicka D
    J Bacteriol; 1995 Jul; 177(14):4134-6. PubMed ID: 7608089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex.
    Laqueyrerie A; Militzer P; Romain F; Eiglmeier K; Cole S; Marchal G
    Infect Immun; 1995 Oct; 63(10):4003-10. PubMed ID: 7558311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria.
    Wheeler PR; Coldham NG; Keating L; Gordon SV; Wooff EE; Parish T; Hewinson RG
    J Biol Chem; 2005 Mar; 280(9):8069-78. PubMed ID: 15576367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulatory elements of the Mycobacterium tuberculosis gene Rv3881c function efficiently in Escherichia coli.
    Satchidanandam V; Amara RR; Uchil PD; Singh V
    FEMS Microbiol Lett; 2003 Jan; 218(2):365-70. PubMed ID: 12586418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-glycosylation and homodimeric folding significantly enhance the immunoreactivity of Mycobacterium tuberculosis virulence factor CFP32 when produced in the yeast Pichia pastoris.
    Benabdessalem C; Othman H; Ouni R; Ghouibi N; Dahman A; Riahi R; Larguach B; Jihene Bettaieb ; Srairi-Abid N; Barbouche MR; Fathallah MD
    Biochem Biophys Res Commun; 2019 Aug; 516(3):845-850. PubMed ID: 31262446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite.
    Zhang L; Jiang W; Nan J; Almqvist J; Huang Y
    Biochim Biophys Acta; 2014 Jul; 1838(7):1809-16. PubMed ID: 24657232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism.
    Babu M; Greenblatt JF; Emili A; Strynadka NC; Reithmeier RA; Moraes TF
    Structure; 2010 Nov; 18(11):1450-62. PubMed ID: 21070944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A region of a cyanobacterial genome required for sulfate transport.
    Green LS; Laudenbach DE; Grossman AR
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):1949-53. PubMed ID: 2538823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate transport in Penicillium chrysogenum: cloning and characterization of the sutA and sutB genes.
    van de Kamp M; Pizzinini E; Vos A; van der Lende TR; Schuurs TA; Newbert RW; Turner G; Konings WN; Driessen AJ
    J Bacteriol; 1999 Dec; 181(23):7228-34. PubMed ID: 10572125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli.
    Rosentel JK; Healy F; Maupin-Furlow JA; Lee JH; Shanmugam KT
    J Bacteriol; 1995 Sep; 177(17):4857-64. PubMed ID: 7665461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequencing of a unique antigen MPT70 from Mycobacterium tuberculosis H37Rv and expression in BCG using E. coli-mycobacteria shuttle vector.
    Matsumoto S; Matsuo T; Ohara N; Hotokezaka H; Naito M; Minami J; Yamada T
    Scand J Immunol; 1995 Mar; 41(3):281-7. PubMed ID: 7871388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity and control of choline-O-sulfate transport in filamentous fungi.
    Bellenger N; Nissen P; Wood TC; Segel IH
    J Bacteriol; 1968 Nov; 96(5):1574-85. PubMed ID: 5726299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter.
    Karinou E; Compton EL; Morel M; Javelle A
    Mol Microbiol; 2013 Feb; 87(3):623-40. PubMed ID: 23278959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli.
    Pathania R; Navani NK; Gardner AM; Gardner PR; Dikshit KL
    Mol Microbiol; 2002 Sep; 45(5):1303-14. PubMed ID: 12207698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG.
    Lefèvre P; Braibant M; de Wit L; Kalai M; Röeper D; Grötzinger J; Delville JP; Peirs P; Ooms J; Huygen K; Content J
    J Bacteriol; 1997 May; 179(9):2900-6. PubMed ID: 9139906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the STAS domains of rat prestin and human pendrin reveal conformational motions in conserved flexible regions.
    Sharma AK; Zelikovic I; Alper SL
    Cell Physiol Biochem; 2014; 33(3):605-20. PubMed ID: 24603188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.