These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 18255557)

  • 1. Canonical parameterization of excess motor degrees of freedom with self-organizing maps.
    Demers D; Kreutz-Delgado K
    IEEE Trans Neural Netw; 1996; 7(1):43-55. PubMed ID: 18255557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectionist modeling for arm kinematics using visual information.
    Campos TR
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(1):89-99. PubMed ID: 18263008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-based learning theory for organizing visuo-motor coordination.
    Luo Z; Ito M
    Biol Cybern; 1998 Oct; 79(4):279-89. PubMed ID: 9830703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure.
    Mu Z; Han L; Xu W; Li B; Liang B
    Robotics Biomim; 2016; 3(1):16. PubMed ID: 27766193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growing a hypercubical output space in a self-organizing feature map.
    Bauer HU; Villmann T
    IEEE Trans Neural Netw; 1997; 8(2):218-26. PubMed ID: 18255626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators.
    Zhang X; Fan B; Wang C; Cheng X
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal surface parameterization using inverse curvature map.
    Yang YL; Kim J; Luo F; Hu SM; Gu X
    IEEE Trans Vis Comput Graph; 2008; 14(5):1054-66. PubMed ID: 18599917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lagrangian network for kinematic control of redundant robot manipulators.
    Wang J; Hu Q; Jiang D
    IEEE Trans Neural Netw; 1999; 10(5):1123-32. PubMed ID: 18252613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm.
    Bullock D; Grossberg S; Guenther FH
    J Cogn Neurosci; 1993; 5(4):408-35. PubMed ID: 23964916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discretization of parametrizable signal manifolds.
    Vural E; Frossard P
    IEEE Trans Image Process; 2011 Dec; 20(12):3621-33. PubMed ID: 21606033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study and resolution of singularities for a 6-DOF PUMA manipulator.
    Cheng FT; Hour TL; Sun YY; Chen TH
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(2):332-43. PubMed ID: 18255874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning nonlinear image manifolds by global alignment of local linear models.
    Verbeek J
    IEEE Trans Pattern Anal Mach Intell; 2006 Aug; 28(8):1236-50. PubMed ID: 16886860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Trajectories for Robot Programing by Demonstration Using a Coordinated Mixture of Factor Analyzers.
    Field M; Stirling D; Pan Z; Naghdy F
    IEEE Trans Cybern; 2016 Mar; 46(3):706-17. PubMed ID: 25826815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined Self-Motion Scheme With Zero Initial Velocities and Time-Varying Physical Limits
    Tang Z; Zhang Y
    Front Neurorobot; 2022; 16():945346. PubMed ID: 36061146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decision manifolds--a supervised learning algorithm based on self-organization.
    Polzlbauer G; Lidy T; Rauber A
    IEEE Trans Neural Netw; 2008 Sep; 19(9):1518-30. PubMed ID: 18779085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A manipulative instrument with simultaneous gesture and end-effector trajectory planning and controlling.
    Lin HI; Nguyen XA
    Rev Sci Instrum; 2017 May; 88(5):055107. PubMed ID: 28571409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):98-105. PubMed ID: 18244770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint torque reduction of a three dimensional redundant planar manipulator.
    Yahya S; Moghavvemi M; Almurib HA
    Sensors (Basel); 2012; 12(6):6869-92. PubMed ID: 22969326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-point impedance control for redundant manipulators.
    Tsuji T; Jazidie A; Kaneko M
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(5):707-18. PubMed ID: 18263070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.