These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18255638)

  • 1. High-order and multilayer perceptron initialization.
    Thimm G; Fiesler E
    IEEE Trans Neural Netw; 1997; 8(2):349-59. PubMed ID: 18255638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the initialization and optimization of multilayer perceptrons.
    Weymaere N; Martens JP
    IEEE Trans Neural Netw; 1994; 5(5):738-51. PubMed ID: 18267848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedforward neural networks initialization based on discriminant learning.
    Chumachenko K; Iosifidis A; Gabbouj M
    Neural Netw; 2022 Feb; 146():220-229. PubMed ID: 34902796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer Potts perceptrons with Levenberg-Marquardt learning.
    Wu JM
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2032-43. PubMed ID: 19054728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic tunneling technique for efficient training of multilayer perceptrons.
    RoyChowdhury P; Singh YP; Chansarkar RA
    IEEE Trans Neural Netw; 1999; 10(1):48-55. PubMed ID: 18252502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical framework for improved weight initialization of neural networks using Lagrange multipliers.
    de Pater I; Mitici M
    Neural Netw; 2023 Sep; 166():579-594. PubMed ID: 37586258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary optimization framework to train multilayer perceptrons for engineering applications.
    Al-Hajj R; Fouad MM; Zeki M
    Math Biosci Eng; 2024 Jan; 21(2):2970-2990. PubMed ID: 38454715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting optimal experiments for multiple output multilayer perceptrons.
    Belue LM; Bauer KW; Ruck DW
    Neural Comput; 1997 Jan; 9(1):161-83. PubMed ID: 9117897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Missing value imputation on missing completely at random data using multilayer perceptrons.
    Silva-Ramírez EL; Pino-Mejías R; López-Coello M; Cubiles-de-la-Vega MD
    Neural Netw; 2011 Jan; 24(1):121-9. PubMed ID: 20875726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer.
    Ergezinger S; Thomsen E
    IEEE Trans Neural Netw; 1995; 6(1):31-42. PubMed ID: 18263283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specification of training sets and the number of hidden neurons for multilayer perceptrons.
    Camargo LS; Yoneyama T
    Neural Comput; 2001 Dec; 13(12):2673-80. PubMed ID: 11705406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving the linear interval tolerance problem for weight initialization of neural networks.
    Adam SP; Karras DA; Magoulas GD; Vrahatis MN
    Neural Netw; 2014 Jun; 54():17-37. PubMed ID: 24637071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients.
    Yam JF; Chow TS
    IEEE Trans Neural Netw; 2001; 12(2):430-4. PubMed ID: 18244398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of multilayer perceptrons for discriminating and quantifying multiple kinds of odors with an electronic nose.
    Gao D; Yang Z; Cai C; Liu F
    Neural Netw; 2012 Sep; 33():204-15. PubMed ID: 22717447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A constructive method for multivariate function approximation by multilayer perceptrons.
    Geva S; Sitte J
    IEEE Trans Neural Netw; 1992; 3(4):621-4. PubMed ID: 18276462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer perceptrons to approximate complex valued functions.
    Arena P; Fortuna L; Re R; Xibilia MG
    Int J Neural Syst; 1995 Dec; 6(4):435-46. PubMed ID: 8963472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the number of centroids for CMLP network.
    Lehtokangas M
    Neural Netw; 2000; 13(4-5):525-31. PubMed ID: 10946397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer perceptrons: approximation order and necessary number of hidden units.
    Trenn S
    IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized multilayer perceptrons for molecular classification and diagnosis using genomic data.
    Wang Z; Wang Y; Xuan J; Dong Y; Bakay M; Feng Y; Clarke R; Hoffman EP
    Bioinformatics; 2006 Mar; 22(6):755-61. PubMed ID: 16403791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.