These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 18255655)
1. A methodology for constructing fuzzy algorithms for learning vector quantization. Karayiannis NB IEEE Trans Neural Netw; 1997; 8(3):505-18. PubMed ID: 18255655 [TBL] [Abstract][Full Text] [Related]
2. Fuzzy algorithms for learning vector quantization. Karayiannis NB; Pai PI IEEE Trans Neural Netw; 1996; 7(5):1196-211. PubMed ID: 18263514 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization. Karayiannis NB; Pai PI IEEE Trans Med Imaging; 1999 Feb; 18(2):172-80. PubMed ID: 10232674 [TBL] [Abstract][Full Text] [Related]
4. An axiomatic approach to soft learning vector quantization and clustering. Karayiannis NB IEEE Trans Neural Netw; 1999; 10(5):1153-65. PubMed ID: 18252616 [TBL] [Abstract][Full Text] [Related]
5. Image compression based on fuzzy algorithms for learning vector quantization and wavelet image decomposition. Karayiannis NB; Pai PI; Zervos N IEEE Trans Image Process; 1998; 7(8):1223-30. PubMed ID: 18276335 [TBL] [Abstract][Full Text] [Related]
6. Fuzzy-neuro LVQ and its comparison with fuzzy algorithm LVQ in artificial odor discrimination system. Kusumoputro B; Budiarto H; Jatmiko W ISA Trans; 2002 Oct; 41(4):395-407. PubMed ID: 12398272 [TBL] [Abstract][Full Text] [Related]
7. Soft learning vector quantization and clustering algorithms based on non-Euclidean norms: multinorm algorithms. Karayiannis NB; Randolph-Gips MM IEEE Trans Neural Netw; 2003; 14(1):89-102. PubMed ID: 18237993 [TBL] [Abstract][Full Text] [Related]
8. Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators. Karayiannis NB IEEE Trans Neural Netw; 2000; 11(5):1093-105. PubMed ID: 18249837 [TBL] [Abstract][Full Text] [Related]
9. Soft learning vector quantization and clustering algorithms based on non-Euclidean norms: single-norm algorithms. Karayiannis NB; Randolph-Gips MM IEEE Trans Neural Netw; 2005 Mar; 16(2):423-35. PubMed ID: 15787149 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms. Yang MS; Lin KC; Liu HC; Lirng JF Magn Reson Imaging; 2007 Feb; 25(2):265-77. PubMed ID: 17275624 [TBL] [Abstract][Full Text] [Related]
12. LVQ algorithm with instance weighting for generation of prototype-based rules. Blachnik M; Duch W Neural Netw; 2011 Oct; 24(8):824-30. PubMed ID: 21726977 [TBL] [Abstract][Full Text] [Related]
13. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques. Karayiannis NB; Mi GW IEEE Trans Neural Netw; 1997; 8(6):1492-506. PubMed ID: 18255750 [TBL] [Abstract][Full Text] [Related]
14. Suppressed fuzzy-soft learning vector quantization for MRI segmentation. Hung WL; Chen DH; Yang MS Artif Intell Med; 2011 May; 52(1):33-43. PubMed ID: 21435851 [TBL] [Abstract][Full Text] [Related]
15. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique. Singh A; Quek C; Cho SY IEEE Trans Neural Netw; 2008 Apr; 19(4):625-44. PubMed ID: 18390309 [TBL] [Abstract][Full Text] [Related]
16. Distance learning in discriminative vector quantization. Schneider P; Biehl M; Hammer B Neural Comput; 2009 Oct; 21(10):2942-69. PubMed ID: 19635012 [TBL] [Abstract][Full Text] [Related]
17. Round Randomized Learning Vector Quantization for Brain Tumor Imaging. Sheikh Abdullah SN; Bohani FA; Nayef BH; Sahran S; Al Akash O; Iqbal Hussain R; Ismail F Comput Math Methods Med; 2016; 2016():8603609. PubMed ID: 27516807 [TBL] [Abstract][Full Text] [Related]
18. Learning vector quantization with training data selection. Pedreira CE IEEE Trans Pattern Anal Mach Intell; 2006 Jan; 28(1):157-62. PubMed ID: 16402629 [TBL] [Abstract][Full Text] [Related]
19. Fuzzy vector quantization algorithms and their application in image compression. Karayiannis NB; Pai PI IEEE Trans Image Process; 1995; 4(9):1193-201. PubMed ID: 18292016 [TBL] [Abstract][Full Text] [Related]