These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 18256051)
1. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. Lopez AB; Van Eck J; Conlin BJ; Paolillo DJ; O'Neill J; Li L J Exp Bot; 2008; 59(2):213-23. PubMed ID: 18256051 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Ducreux LJ; Morris WL; Hedley PE; Shepherd T; Davies HV; Millam S; Taylor MA J Exp Bot; 2005 Jan; 56(409):81-9. PubMed ID: 15533882 [TBL] [Abstract][Full Text] [Related]
3. Modulation of carotenoid accumulation in transgenic potato by inducing chromoplast formation with enhanced sink strength. Van Eck J; Zhou X; Lu S; Li L Methods Mol Biol; 2010; 643():77-93. PubMed ID: 20552445 [TBL] [Abstract][Full Text] [Related]
4. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Li L; Yang Y; Xu Q; Owsiany K; Welsch R; Chitchumroonchokchai C; Lu S; Van Eck J; Deng XX; Failla M; Thannhauser TW Mol Plant; 2012 Mar; 5(2):339-52. PubMed ID: 22155949 [TBL] [Abstract][Full Text] [Related]
5. Use of the cauliflower Or gene for improving crop nutritional quality. Zhou X; Van Eck J; Li L Biotechnol Annu Rev; 2008; 14():171-90. PubMed ID: 18606363 [TBL] [Abstract][Full Text] [Related]
6. Regulatory control of high levels of carotenoid accumulation in potato tubers. Zhou X; McQuinn R; Fei Z; Wolters AA; VAN Eck J; Brown C; Giovannoni JJ; Li LI Plant Cell Environ; 2011 Jun; 34(6):1020-1030. PubMed ID: 21388418 [TBL] [Abstract][Full Text] [Related]
7. Carotenogenesis during tuber development and storage in potato. Morris WL; Ducreux L; Griffiths DW; Stewart D; Davies HV; Taylor MA J Exp Bot; 2004 May; 55(399):975-82. PubMed ID: 15047766 [TBL] [Abstract][Full Text] [Related]
8. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Fernandez-Orozco R; Gallardo-Guerrero L; Hornero-Méndez D Food Chem; 2013 Dec; 141(3):2864-72. PubMed ID: 23871035 [TBL] [Abstract][Full Text] [Related]
9. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Baroja-Fernández E; Muñoz FJ; Montero M; Etxeberria E; Sesma MT; Ovecka M; Bahaji A; Ezquer I; Li J; Prat S; Pozueta-Romero J Plant Cell Physiol; 2009 Sep; 50(9):1651-62. PubMed ID: 19608713 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional-metabolic networks in beta-carotene-enriched potato tubers: the long and winding road to the Golden phenotype. Diretto G; Al-Babili S; Tavazza R; Scossa F; Papacchioli V; Migliore M; Beyer P; Giuliano G Plant Physiol; 2010 Oct; 154(2):899-912. PubMed ID: 20671108 [TBL] [Abstract][Full Text] [Related]
12. beta-Carotene accumulation induced by the cauliflower Or gene is not due to an increased capacity of biosynthesis. Li L; Lu S; Cosman KM; Earle ED; Garvin DF; O'Neill J Phytochemistry; 2006 Jun; 67(12):1177-84. PubMed ID: 16790254 [TBL] [Abstract][Full Text] [Related]
13. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Römer S; Lübeck J; Kauder F; Steiger S; Adomat C; Sandmann G Metab Eng; 2002 Oct; 4(4):263-72. PubMed ID: 12646321 [TBL] [Abstract][Full Text] [Related]
14. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Mortimer CL; Misawa N; Ducreux L; Campbell R; Bramley PM; Taylor M; Fraser PD Plant Biotechnol J; 2016 Jan; 14(1):140-52. PubMed ID: 25845905 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. Diretto G; Tavazza R; Welsch R; Pizzichini D; Mourgues F; Papacchioli V; Beyer P; Giuliano G BMC Plant Biol; 2006 Jun; 6():13. PubMed ID: 16800876 [TBL] [Abstract][Full Text] [Related]
16. Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Regierer B; Fernie AR; Springer F; Perez-Melis A; Leisse A; Koehl K; Willmitzer L; Geigenberger P; Kossmann J Nat Biotechnol; 2002 Dec; 20(12):1256-60. PubMed ID: 12426579 [TBL] [Abstract][Full Text] [Related]
17. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. Fujisawa M; Takita E; Harada H; Sakurai N; Suzuki H; Ohyama K; Shibata D; Misawa N J Exp Bot; 2009; 60(4):1319-32. PubMed ID: 19204032 [TBL] [Abstract][Full Text] [Related]
18. Effects of season and postharvest storage on the carotenoid content of Solanum phureja potato tubers. Griffiths DW; Dale MF; Morris WL; Ramsay G J Agric Food Chem; 2007 Jan; 55(2):379-85. PubMed ID: 17227068 [TBL] [Abstract][Full Text] [Related]
19. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Bradeen JM; Iorizzo M; Mollov DS; Raasch J; Kramer LC; Millett BP; Austin-Phillips S; Jiang J; Carputo D Mol Plant Microbe Interact; 2009 Apr; 22(4):437-46. PubMed ID: 19271958 [TBL] [Abstract][Full Text] [Related]
20. Decreased expression of plastidial adenylate kinase in potato tubers results in an enhanced rate of respiration and a stimulation of starch synthesis that is attributable to post-translational redox-activation of ADP-glucose pyrophosphorylase. Oliver SN; Tiessen A; Fernie AR; Geigenberger P J Exp Bot; 2008; 59(2):315-25. PubMed ID: 18252705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]