These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18256449)

  • 1. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compound Doppler ultrasound signal simulation for pulsatile carotid arteries with a stenosis.
    Gao L; Zhang Y; Zhou Y; Hu X; Deng L; Zhang K; Cai G; Zhang J
    Biomed Mater Eng; 2016 Aug; 27(2-3):131-48. PubMed ID: 27567770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall.
    Zhang Q; Zhang Y; Zhou Y; Zhang K; Zhang K; Gao L
    Biomed Res Int; 2016; 2016():8502873. PubMed ID: 27478840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system.
    Nam KH; Bok TH; Jin C; Paeng DG
    Ultrasonics; 2014 Jan; 54(1):233-40. PubMed ID: 23664377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D dynamical ultrasonic model of pulsating vessel walls.
    Balocco S; Basset O; Courbebaisse G; Delachartre P; Tortoli P; Cachard C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e179-83. PubMed ID: 16857232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal displacement in viscoelastic arteries: a novel fluid-structure interaction computational model, and experimental validation.
    Bukač M; Čanić S
    Math Biosci Eng; 2013 Apr; 10(2):295-318. PubMed ID: 23458302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Ultrasound-Measured Flow Rate and Wall Shear Rate in Wrist Arteries Using Flow Phantoms.
    Zhou X; Xia C; Khan F; Corner GA; Huang Z; Hoskins PR
    Ultrasound Med Biol; 2016 Mar; 42(3):815-23. PubMed ID: 26742894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of dual Doppler velocity measurements to estimate volume pulsations of an arterial segment.
    Hartley CJ; Reddy AK; Madala S; Entman ML; Taffet GE
    Ultrasound Med Biol; 2010 Jul; 36(7):1169-75. PubMed ID: 20620703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.
    Mynard JP; Steinman DA
    Ultrasound Med Biol; 2013 May; 39(5):870-81. PubMed ID: 23453373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-scale removal of "wall thump" in Doppler ultrasound signals: a simulation study.
    Zhang Y; Cardoso JC; Wang Y; Fish PJ; Bastos CA; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1187-92. PubMed ID: 15478981
    [No Abstract]   [Full Text] [Related]  

  • 15. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation.
    Zhao SZ; Xu XY; Hughes AD; Thom SA; Stanton AV; Ariff B; Long Q
    J Biomech; 2000 Aug; 33(8):975-84. PubMed ID: 10828328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021914. PubMed ID: 18850872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profound increase in longitudinal displacements of the porcine carotid artery wall can take place independently of wall shear stress: a continuation report.
    Ahlgren ÅR; Steen S; Segstedt S; Erlöv T; Lindström K; Sjöberg T; Persson HW; Ricci S; Tortoli P; Cinthio M
    Ultrasound Med Biol; 2015 May; 41(5):1342-53. PubMed ID: 25726134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer simulation model for Doppler ultrasound signals from pulsatile blood flow in stenosed vessels.
    Gao L; Zhang Y; Zhang K; Cai G; Zhang J; Shi X
    Comput Biol Med; 2012 Sep; 42(9):906-14. PubMed ID: 22841363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.