These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 1825662)

  • 1. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable.
    Schliwa M; Shimizu T; Vale RD; Euteneuer U
    J Cell Biol; 1991 Mar; 112(6):1199-203. PubMed ID: 1825662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the motile and enzymatic properties of two microtubule minus-end-directed motors, ncd and cytoplasmic dynein.
    Shimizu T; Toyoshima YY; Edamatsu M; Vale RD
    Biochemistry; 1995 Feb; 34(5):1575-82. PubMed ID: 7849016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organelles are transported on sliding microtubules in Reticulomyxa.
    Orokos DD; Cole RW; Travis JL
    Cell Motil Cytoskeleton; 2000 Dec; 47(4):296-306. PubMed ID: 11093250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of ATPase activity of 14S dynein from Tetrahymena cilia by microtubules.
    Shimizu T; Hosoya N; Hisanaga S; Marchese-Ragona SP; Pratt MM
    Eur J Biochem; 1992 Jun; 206(3):911-7. PubMed ID: 1535044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynein is the motor for retrograde axonal transport of organelles.
    Schnapp BJ; Reese TS
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1548-52. PubMed ID: 2466291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell surface and organelle transport share the same enzymatic properties in Reticulomyxa.
    Orokos DD; Travis JL
    Cell Motil Cytoskeleton; 1997; 38(3):270-7. PubMed ID: 9384217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin.
    Shimizu T; Furusawa K; Ohashi S; Toyoshima YY; Okuno M; Malik F; Vale RD
    J Cell Biol; 1991 Mar; 112(6):1189-97. PubMed ID: 1825661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivation of organelle movements along the cytoskeletal framework of a giant freshwater ameba.
    Koonce MP; Schliwa M
    J Cell Biol; 1986 Aug; 103(2):605-12. PubMed ID: 3733883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultured cell extracts support organelle movement on microtubules in vitro.
    Dabora SL; Sheetz MP
    Cell Motil Cytoskeleton; 1988; 10(4):482-95. PubMed ID: 3145153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.
    Vale RD; Malik F; Brown D
    J Cell Biol; 1992 Dec; 119(6):1589-96. PubMed ID: 1469050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force generation of organelle transport measured in vivo by an infrared laser trap.
    Ashkin A; Schütze K; Dziedzic JM; Euteneuer U; Schliwa M
    Nature; 1990 Nov; 348(6299):346-8. PubMed ID: 2250707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules.
    Romagnoli S; Cai G; Cresti M
    Plant Cell; 2003 Jan; 15(1):251-69. PubMed ID: 12509535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism and regulation of fast axonal transport.
    Sheetz MP; Steuer ER; Schroer TA
    Trends Neurosci; 1989 Nov; 12(11):474-8. PubMed ID: 2479151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora.
    Seiler S; Plamann M; Schliwa M
    Curr Biol; 1999 Jul 29-Aug 12; 9(15):779-85. PubMed ID: 10469561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations.
    Monzon GA; Scharrel L; DSouza A; Henrichs V; Santen L; Diez S
    J Cell Sci; 2020 Nov; 133(22):. PubMed ID: 33257498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa.
    Euteneuer U; Koonce MP; Pfister KK; Schliwa M
    Nature; 1988 Mar; 332(6160):176-8. PubMed ID: 2964563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemomechanical cycle of kinesin differs from that of myosin.
    Romberg L; Vale RD
    Nature; 1993 Jan; 361(6408):168-70. PubMed ID: 8421522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide specificity for the bidirectional transport of membrane-bounded organelles in isolated axoplasm.
    Leopold PL; Snyder R; Bloom GS; Brady ST
    Cell Motil Cytoskeleton; 1990; 15(4):210-9. PubMed ID: 1692515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the microtubule-binding and ATPase activities of kinesin by N-ethylmaleimide (NEM) suggests a role for sulfhydryls in fast axonal transport.
    Pfister KK; Wagner MC; Bloom GS; Brady ST
    Biochemistry; 1989 Nov; 28(23):9006-12. PubMed ID: 2481499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.