BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 18256663)

  • 1. Towards a molecular understanding of shape selectivity.
    Smit B; Maesen TL
    Nature; 2008 Feb; 451(7179):671-8. PubMed ID: 18256663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing the molecular modelling of diffusion in zeolites as a high throughput catalyst screening technique.
    Deka RCh; Vetrivel R
    Comb Chem High Throughput Screen; 2003 Feb; 6(1):1-9. PubMed ID: 12570748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity.
    Corma A; Rey F; Valencia S; Jordá JL; Rius J
    Nat Mater; 2003 Jul; 2(7):493-7. PubMed ID: 12819773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst.
    Corma A; Díaz-Cabañas MJ; Martínez-Triguero J; Rey F; Rius J
    Nature; 2002 Aug; 418(6897):514-7. PubMed ID: 12152074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined experimental and computational study of the catalytic dehydration of glycerol on microporous zeolites: an investigation of the reaction mechanism and acrolein selectivity.
    Lin X; Lv Y; Qu Y; Zhang G; Xi Y; Phillips DL; Liu C
    Phys Chem Chem Phys; 2013 Dec; 15(46):20120-33. PubMed ID: 24158544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A link between reactivity and local structure in acid catalysis on zeolites.
    Bhan A; Iglesia E
    Acc Chem Res; 2008 Apr; 41(4):559-67. PubMed ID: 18278876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure.
    Bare SR; Kelly SD; Sinkler W; Low JJ; Modica FS; Valencia S; Corma A; Nemeth LT
    J Am Chem Soc; 2005 Sep; 127(37):12924-32. PubMed ID: 16159286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species.
    Serna P; Gates BC
    J Am Chem Soc; 2011 Apr; 133(13):4714-7. PubMed ID: 21391590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.
    Pérez-Ramírez J; Christensen CH; Egeblad K; Christensen CH; Groen JC
    Chem Soc Rev; 2008 Nov; 37(11):2530-42. PubMed ID: 18949124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site coating for molecular discrimination in heterogeneous catalysis.
    Collier P; Golunski S; Malde C; Breen J; Burch R
    J Am Chem Soc; 2003 Oct; 125(41):12414-5. PubMed ID: 14531677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions.
    Gounder R; Iglesia E
    Chem Commun (Camb); 2013 May; 49(34):3491-509. PubMed ID: 23507832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-like specificity in zeolites: a unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO.
    Boronat M; Martínez-Sánchez C; Law D; Corma A
    J Am Chem Soc; 2008 Dec; 130(48):16316-23. PubMed ID: 18986144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates.
    Lesthaeghe D; Van Speybroeck V; Waroquier M
    Phys Chem Chem Phys; 2009 Jul; 11(26):5222-6. PubMed ID: 19551188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporosity--a new dimension for zeolites.
    Möller K; Bein T
    Chem Soc Rev; 2013 May; 42(9):3689-707. PubMed ID: 23460052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic signatures of nitrogen-substituted zeolites.
    Hammond KD; Dogan F; Tompsett GA; Agarwal V; Conner WC; Grey CP; Auerbach SM
    J Am Chem Soc; 2008 Nov; 130(45):14912-3. PubMed ID: 18855470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical zeolites overcome all obstacles: next stop industrial implementation.
    Verboekend D; Mitchell S; Pérez-Ramírez J
    Chimia (Aarau); 2013; 67(5):327-32. PubMed ID: 23863266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF).
    Gevers LE; Vankelecom IF; Jacobs PA
    Chem Commun (Camb); 2005 May; (19):2500-2. PubMed ID: 15886784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of gas separations using faujasite-type zeolite membranes.
    Jia W; Murad S
    J Chem Phys; 2004 Mar; 120(10):4877-85. PubMed ID: 15267348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of a model zeolite ring over hydrocarbons with different symmetry, travelling with different orientations and speeds.
    Zaragoza IP; García-Serrano LA; Santamaria R
    J Phys Chem B; 2005 Jan; 109(2):705-10. PubMed ID: 16866430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.