These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18256768)

  • 1. Use of ultrasonic standing wave in biological studies and cell technologies.
    Pashovkin TN; Sadikova DG; Pashovkina MS; Shil'nikov GV
    Bull Exp Biol Med; 2007 Jul; 144(1):118-22. PubMed ID: 18256768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new immobilisation method to arrange particles in a gel matrix by ultrasound standing waves.
    Gherardini L; Cousins CM; Hawkes JJ; Spengler J; Radel S; Lawler H; Devcic-Kuhar B; Gröschl M; Coakley WT; McLoughlin AJ
    Ultrasound Med Biol; 2005 Feb; 31(2):261-72. PubMed ID: 15708466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical scale ultrasonic standing wave manipulation of cells and microparticles.
    Coakley WT; Hawkes JJ; Sobanski MA; Cousins CM; Spengler J
    Ultrasonics; 2000 Mar; 38(1-8):638-41. PubMed ID: 10829742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clarification of small volume microbial suspensions in an ultrasonic standing wave.
    Limaye MS; Coakley WT
    J Appl Microbiol; 1998 Jun; 84(6):1035-42. PubMed ID: 9717288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregation and sedimentation of red blood cells in ultrasonic standing waves.
    Baker NV
    Nature; 1972 Oct; 239(5372):398-9. PubMed ID: 12635302
    [No Abstract]   [Full Text] [Related]  

  • 7. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves.
    Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E
    Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Lab Chip; 2005 Jan; 5(1):20-2. PubMed ID: 15616735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the spatial organisation of microbial cells in a gel matrix subjected to treatment with ultrasound standing waves.
    Gherardini L; Radel S; Sielemann S; Doblhoff-Dier O; Gröschl M; Benes E; McLoughlin AJ
    Bioseparation; 2001; 10(4-5):153-62. PubMed ID: 12233739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakdown of immobilisation/separation and morphology changes of yeast suspended in water-rich ethanol mixtures exposed to ultrasonic plane standing waves.
    Radel S; Gherardini L; McLoughlin AJ; Doblhoff-Dier O; Benes E
    Bioseparation; 2000; 9(6):369-77. PubMed ID: 11518240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field.
    Spengler JF; Jekel M; Christensen KT; Adrian RJ; Hawkes JJ; Coakley WT
    Bioseparation; 2000; 9(6):329-41. PubMed ID: 11518236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound enhanced phase partition of microorganisms.
    Allman R; Coakley WT
    Bioseparation; 1994 Feb; 4(1):29-38. PubMed ID: 7764585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydrocyclones on the integrity of animal and microbial cells.
    Bendixen B; Rickwood D
    Bioseparation; 1994 Feb; 4(1):21-7. PubMed ID: 7764584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic separations in analytical biotechnology.
    Coakley WT
    Trends Biotechnol; 1997 Dec; 15(12):506-11. PubMed ID: 9418305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.
    Faraghat SA; Hoettges KF; Steinbach MK; van der Veen DR; Brackenbury WJ; Henslee EA; Labeed FH; Hughes MP
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4591-4596. PubMed ID: 28408395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid agglutination testing in an ultrasonic standing wave.
    Grundy MA; Bolek WE; Coakley WT; Benes E
    J Immunol Methods; 1993 Sep; 165(1):47-57. PubMed ID: 8409468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery.
    Jönsson H; Holm C; Nilsson A; Petersson F; Johnsson P; Laurell T
    Ann Thorac Surg; 2004 Nov; 78(5):1572-7. PubMed ID: 15511433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.