These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 18257056)
1. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056 [TBL] [Abstract][Full Text] [Related]
2. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment. Takeuchi A; Munar ML; Wakae H; Maruta M; Matsuya S; Tsuru K; Ishikawa K Biomed Mater Eng; 2009; 19(2-3):205-11. PubMed ID: 19581715 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142 [TBL] [Abstract][Full Text] [Related]
4. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate". Sugiura Y; Tsuru K; Ishikawa K J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam. Karashima S; Takeuchi A; Matsuya S; Udoh K; Koyano K; Ishikawa K J Biomed Mater Res A; 2009 Mar; 88(3):628-33. PubMed ID: 18314899 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam. Maruta M; Matsuya S; Nakamura S; Ishikawa K Dent Mater J; 2011; 30(1):14-20. PubMed ID: 21282893 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of porous beta-tricalcium phosphate blocks. Bohner M; van Lenthe GH; Grünenfelder S; Hirsiger W; Evison R; Müller R Biomaterials; 2005 Nov; 26(31):6099-105. PubMed ID: 15885772 [TBL] [Abstract][Full Text] [Related]
8. Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications. Miranda P; Saiz E; Gryn K; Tomsia AP Acta Biomater; 2006 Jul; 2(4):457-66. PubMed ID: 16723287 [TBL] [Abstract][Full Text] [Related]
9. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
10. Effects of sintering temperature on physical and compositional properties of alpha-tricalcium phosphate foam. Udoh K; Munar ML; Maruta M; Matsuya S; Ishikawa K Dent Mater J; 2010 Mar; 29(2):154-9. PubMed ID: 20379025 [TBL] [Abstract][Full Text] [Related]
11. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Gorna K; Gogolewski S J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229 [TBL] [Abstract][Full Text] [Related]
12. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J; Ran J; Gou L; Wang F; Sun L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425 [TBL] [Abstract][Full Text] [Related]
13. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Fernández E; Vlad MD; Gel MM; López J; Torres R; Cauich JV; Bohner M Biomaterials; 2005 Jun; 26(17):3395-404. PubMed ID: 15621228 [TBL] [Abstract][Full Text] [Related]
14. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
15. Bone substitute: transforming beta-tricalcium phosphate porous scaffolds into monetite. Galea LG; Bohner M; Lemaître J; Kohler T; Müller R Biomaterials; 2008; 29(24-25):3400-7. PubMed ID: 18495242 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Zou C; Weng W; Deng X; Cheng K; Liu X; Du P; Shen G; Han G Biomaterials; 2005 Sep; 26(26):5276-84. PubMed ID: 15814125 [TBL] [Abstract][Full Text] [Related]
17. Vaterite deposition on biodegradable polymer foam scaffolds for inducing bone-like hydroxycarbonate apatite coatings. Maeda H; Maquet V; Kasuga T; Chen QZ; Roether JA; Boccaccini AR J Mater Sci Mater Med; 2007 Dec; 18(12):2269-73. PubMed ID: 17562142 [TBL] [Abstract][Full Text] [Related]
18. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
19. The development of carbonate-containing apatite/collagen composite for osteoconductive apical barrier material. Takenaka Y; Iijima M; Kawano S; Akita Y; Yoshida T; Doi Y; Sekine I J Endod; 2008 Sep; 34(9):1096-100. PubMed ID: 18718373 [TBL] [Abstract][Full Text] [Related]
20. Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam. Ginebra MP; Delgado JA; Harr I; Almirall A; Del Valle S; Planell JA J Biomed Mater Res A; 2007 Feb; 80(2):351-61. PubMed ID: 17001653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]