These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 18257570)

  • 1. Probing structure in invisible protein states with anisotropic NMR chemical shifts.
    Vallurupalli P; Hansen DF; Kay LE
    J Am Chem Soc; 2008 Mar; 130(9):2734-5. PubMed ID: 18257570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do?
    Hansen DF; Vallurupalli P; Lundström P; Neudecker P; Kay LE
    J Am Chem Soc; 2008 Feb; 130(8):2667-75. PubMed ID: 18237174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy.
    Baldwin AJ; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Aug; 131(33):11939-48. PubMed ID: 19627152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy.
    Lundström P; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Feb; 131(5):1915-26. PubMed ID: 19152327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts.
    John M; Park AY; Pintacuda G; Dixon NE; Otting G
    J Am Chem Soc; 2005 Dec; 127(49):17190-1. PubMed ID: 16332059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ln(DPA)(3)](3-) is a convenient paramagnetic shift reagent for protein NMR studies.
    Su XC; Liang H; Loscha KV; Otting G
    J Am Chem Soc; 2009 Aug; 131(30):10352-3. PubMed ID: 19585996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of methyl group motional parameters of invisible, excited protein states by NMR spectroscopy.
    Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Sep; 131(35):12745-54. PubMed ID: 19685870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular alignment of proteins in bicellar solutions: quantitative evaluation of effects induced in 2D COSY spectra.
    Brunner E; Ogle J; Wenzler M; Kalbitzer HR
    Biochem Biophys Res Commun; 2000 Jun; 272(3):694-8. PubMed ID: 10860817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the signs of 1H(alpha) chemical shift differences between ground and excited protein states by off-resonance spin-lock R(1rho) NMR spectroscopy.
    Auer R; Neudecker P; Muhandiram DR; Lundström P; Hansen DF; Konrat R; Kay LE
    J Am Chem Soc; 2009 Aug; 131(31):10832-3. PubMed ID: 19606858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts.
    Hansen DF; Neudecker P; Kay LE
    J Am Chem Soc; 2010 Jun; 132(22):7589-91. PubMed ID: 20465253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Leu side-chain conformations in excited protein states by NMR relaxation dispersion.
    Hansen DF; Neudecker P; Vallurupalli P; Mulder FA; Kay LE
    J Am Chem Soc; 2010 Jan; 132(1):42-3. PubMed ID: 20000605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P NMR chemical shifts in hypervalent oxyphosphoranes and polymeric orthophosphates.
    Zhang Y; Oldfield E
    J Phys Chem B; 2006 Jan; 110(1):579-86. PubMed ID: 16471570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method to predict protein flexibility using secondary chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2005 Nov; 127(43):14970-1. PubMed ID: 16248604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 51V NMR chemical shifts calculated from QM/MM models of vanadium chloroperoxidase.
    Waller MP; Bühl M; Geethalakshmi KR; Wang D; Thiel W
    Chemistry; 2007; 13(17):4723-32. PubMed ID: 17440907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors.
    Brouwer DH; Enright GD
    J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical shift correlations from hyperpolarized NMR by off-resonance decoupling.
    Bowen S; Zeng H; Hilty C
    Anal Chem; 2008 Aug; 80(15):5794-8. PubMed ID: 18605696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-correlated relaxation between H1' chemical shift anisotropy and H1'-H2' dipolar relaxation mechanisms in ribonucleosides: application to the characterization of their anomeric configuration.
    Pichumani K; Chandra T; Zou X; Brown KL
    J Phys Chem B; 2006 Jan; 110(1):5-8. PubMed ID: 16471486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.