BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 18257572)

  • 21. Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters.
    Kuo CL; Clancy P
    J Phys Chem B; 2005 Jul; 109(28):13743-54. PubMed ID: 16852722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A density functional investigation of thiolate-protected bimetal PdAu(24)(SR)(18)(z) clusters: doping the superatom complex.
    Kacprzak KA; Lehtovaara L; Akola J; Lopez-Acevedo O; Häkkinen H
    Phys Chem Chem Phys; 2009 Sep; 11(33):7123-9. PubMed ID: 19672520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relativistic effects and the unique low-symmetry structures of gold nanoclusters.
    Huang W; Ji M; Dong CD; Gu X; Wang LM; Gong XG; Wang LS
    ACS Nano; 2008 May; 2(5):897-904. PubMed ID: 19206486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters.
    Sánchez-Castillo A; Noguez C; Garzón IL
    J Am Chem Soc; 2010 Feb; 132(5):1504-5. PubMed ID: 20088496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural, electronic, optical, and chiroptical properties of small thiolated gold clusters: the case of Au6 and Au8 cores protected with dimer [Au2(SR)3] and trimer [Au3(SR)4)] motifs.
    Tlahuice A; Garzón IL
    Phys Chem Chem Phys; 2012 May; 14(20):7321-9. PubMed ID: 22513485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of benzene thiol and thiolate with small gold clusters.
    Letardi S; Cleri F
    J Chem Phys; 2004 Jun; 120(21):10062-8. PubMed ID: 15268028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Staple motifs, initial steps in the formation of thiolate-protected gold nanoparticles: how do they form?
    Rojas-Cervellera V; Giralt E; Rovira C
    Inorg Chem; 2012 Nov; 51(21):11422-9. PubMed ID: 23051107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the Chemical Insights of Staple Motifs of Thiolate-Protected Gold Nanoclusters.
    Wang E; Xu WW; Zhu B; Gao Y
    Small; 2021 Jul; 17(27):e2001836. PubMed ID: 32761984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles.
    Lee D; Donkers RL; Wang G; Harper AS; Murray RW
    J Am Chem Soc; 2004 May; 126(19):6193-9. PubMed ID: 15137785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters.
    Aikens CM
    Acc Chem Res; 2018 Dec; 51(12):3065-3073. PubMed ID: 30444598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum sized, thiolate-protected gold nanoclusters.
    Jin R
    Nanoscale; 2010 Mar; 2(3):343-62. PubMed ID: 20644816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster.
    Molina B; Sánchez-Castillo A; Knoppe S; Garzón IL; Bürgi T; Tlahuice-Flores A
    Nanoscale; 2013 Nov; 5(22):10956-62. PubMed ID: 24061047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability and conformation of polycopper-thiolate clusters studied by density functional approach.
    Ahte P; Palumaa P; Tamm T
    J Phys Chem A; 2009 Aug; 113(32):9157-64. PubMed ID: 19606812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new magic titanium-doped gold cluster and orientation dependent cluster-cluster interaction.
    Chen MX; Yan XH
    J Chem Phys; 2008 May; 128(17):174305. PubMed ID: 18465920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction potentials from periodic density-functional theory calculations: molecular-dynamics simulations of Au clusters deposited on the TiN (001) surface.
    Cruz Hernández N; Fdez Sanz J
    J Chem Phys; 2005 Dec; 123(24):244706. PubMed ID: 16396562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexanethiolate monolayer protected 38 gold atom cluster.
    Jimenez VL; Georganopoulou DG; White RJ; Harper AS; Mills AJ; Lee D; Murray RW
    Langmuir; 2004 Aug; 20(16):6864-70. PubMed ID: 15274597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure and optical properties of the intrinsically chiral 16-electron superatom complex [Au20(PP3)4](4+).
    Knoppe S; Lehtovaara L; Häkkinen H
    J Phys Chem A; 2014 Jun; 118(23):4214-21. PubMed ID: 24856613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the thiolated Au130 cluster.
    Tlahuice-Flores A; Santiago U; Bahena D; Vinogradova E; Conroy CV; Ahuja T; Bach SB; Ponce A; Wang G; José-Yacamán M; Whetten RL
    J Phys Chem A; 2013 Oct; 117(40):10470-6. PubMed ID: 24004091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Structure Model of Au22(SR)18: Bitetrahederon Golden Kernel Enclosed by [Au6(SR)6] Au(I) Complex.
    Pei Y; Tang J; Tang X; Huang Y; Zeng XC
    J Phys Chem Lett; 2015 Apr; 6(8):1390-5. PubMed ID: 26263140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How cationic gold clusters respond to a single sulfur atom.
    Woldeghebriel H; Kshirsagar A
    J Chem Phys; 2007 Dec; 127(22):224708. PubMed ID: 18081415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.