BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 18257957)

  • 1. Temporal coexistence of dung-dweller and soil-digger dung beetles (Coleoptera, Scarabaeoidea) in contrasting Mediterranean habitats.
    Jay-Robert P; Errouissi F; Lumaret JP
    Bull Entomol Res; 2008 Jun; 98(3):303-16. PubMed ID: 18257957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing and optimizing metabarcoding of iDNA from dung beetles to sample mammals in the hyperdiverse Neotropics.
    Saranholi BH; França FM; Vogler AP; Barlow J; Vaz de Mello FZ; Maldaner ME; Carvalho E; Gestich CC; Howes B; Banks-Leite C; Galetti PM
    Mol Ecol Resour; 2024 Jul; 24(5):e13961. PubMed ID: 38646932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammal dung-dung beetle trophic networks: an improved method based on gut-content DNA.
    Pedersen KM; von Beeren C; Oggioni A; Blüthgen N
    PeerJ; 2024; 12():e16627. PubMed ID: 38500531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplicon metagenomics of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) as a proxy for lemur (Primates, Lemuroidea) studies in Madagascar.
    Frolov AV; Akhmetova LA; Vishnevskaya MS; Kiriukhin BA; Montreuil O; Lopes F; Tarasov SI
    Zookeys; 2023; 1181():29-39. PubMed ID: 37810459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dung beetles increase plant growth: a meta-analysis.
    Anderson DJ; Berson JD; Didham RK; Simmons LW; Evans TA
    Proc Biol Sci; 2024 Mar; 291(2019):20232885. PubMed ID: 38503337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dung-beetles (Coleoptera, Scarabaeidae, Aphodiinae, Scarabaeinae) feeding on faeces of steppe marmots
    Akhmetova LA; Kurochkin AS; Frolov AV
    Biodivers Data J; 2024; 12():e125090. PubMed ID: 38933487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroecology of Dung Beetles in Italy.
    Fattorini S; Vitozzi A; Di Biase L; Bergamaschi D
    Insects; 2024 Jan; 15(1):. PubMed ID: 38249045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deliberately introduced dung beetles in Australia: 12 years of occurrence and abundance records from 2001 to 2022.
    Berson JD; Edwards PB; Ridsdill-Smith TJ; Taylor CK; Anderson DJ; Andrew NR; Barrow RA; Cousins DA; Emery RN; Fagan LL; Foster RM; Harwood LG; Hemmings Z; Lewis MJ; Lukehurst SS; Manger J; Matthiessen JN; Vieira MDC; Weston PA; Didham RK; Evans TA
    Ecology; 2024 Jul; 105(7):e4328. PubMed ID: 38782017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and Diversification of Dung Beetles in Madagascar.
    Miraldo A; Wirta H; Hanski I
    Insects; 2011 Apr; 2(2):112-27. PubMed ID: 26467617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The finely defined shift work schedule of dung beetles and their eye morphology.
    Tocco C; Dacke M; Byrne M
    Ecol Evol; 2021 Nov; 11(22):15947-15960. PubMed ID: 34824802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.
    Silva PG; Hernández MI
    PLoS One; 2015; 10(3):e0123030. PubMed ID: 25822150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field evaluation of electrophysiologically-active dung volatiles as chemical lures for trapping of dung beetles.
    Perera NN; Barrow RA; Weston PA; Weston LA; Gurr GM
    Sci Rep; 2024 Jan; 14(1):584. PubMed ID: 38182629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal temperature variation impacts energetics but not reproductive effort across seasons in a temperate dung beetle.
    Fleming JM; Marshall KE; Coverley AJ; Sheldon KS
    Ecology; 2024 Mar; 105(3):e4232. PubMed ID: 38290131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of surface topography on the ball-rolling ability of Kheper lamarcki (Scarabaeidae).
    Bijma NN; Billeschou P; Baird E; Dacke M; Kovalev A; Filippov AE; Manoonpong P; Gorb SN
    J Exp Biol; 2024 Jan; 227(1):. PubMed ID: 38018408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One elephant may sustain 2 million dung beetles in East African savannason any given day.
    Krell FT; Krell-Westerwalbesloh S
    Naturwissenschaften; 2024 Jan; 111(1):5. PubMed ID: 38294560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conversion of native savannah into pasturelands does not affect exclusively species diversity: Effects on physiological condition of a highly abundant dung beetle species.
    Correa CMA; da Silva KC; de Oliveira PLM; Salomão RP
    Ecol Evol; 2023 Nov; 13(11):e10752. PubMed ID: 38020699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resource shifts in Malagasy dung beetles: contrasting processes revealed by dissimilar spatial genetic patterns.
    Hanski I; Wirta H; Nyman T; Rahagalala P
    Ecol Lett; 2008 Nov; 11(11):1208-1215. PubMed ID: 18778273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variation in the diel activity of a dung beetle assemblage.
    Lobo JM; Cuesta E
    PeerJ; 2021; 9():e11786. PubMed ID: 34306833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Survey of the Dung-Dwelling Arthropod Community in the Pastures of the Northern Plains.
    Schmid RB; Welch KD; Lundgren JG
    Insects; 2024 Jan; 15(1):. PubMed ID: 38249043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect floral visitors of thermo-Mediterranean shrubland maquis (Ajaccio, Corsica, France).
    Maestracci PY; Plume L; Gibernau M
    Biodivers Data J; 2024; 12():e118614. PubMed ID: 38726024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.