BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 18258183)

  • 21. Detecting and differentiating microbes by dendritic cells for the development of cell-based biosensors.
    Liu S; Tran KK; Pan S; Shen H
    Biosens Bioelectron; 2009 Apr; 24(8):2598-603. PubMed ID: 19230650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional substitution of the transient membrane-anchor domain in Escherichia coli FtsY with an N-terminal hydrophobic segment of Streptomyces lividans FtsY.
    Maeda I; Hirata A; Shoji M; Ueda S; Yoshida K
    FEMS Microbiol Lett; 2008 Oct; 287(1):85-90. PubMed ID: 18684122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Were class C iron-containing superoxide dismutases of trypanosomatid parasites initially imported into a complex plastid? A hypothesis based on analyses of their N-terminal targeting signals.
    Bodył A; Mackiewicz P
    Parasitology; 2008 Aug; 135(9):1101-10. PubMed ID: 18620621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential translocation of green fluorescent protein fused to signal sequences of Ruminococcus albus cellulases by the Tat and Sec pathways of Escherichia coli.
    Esbelin J; Martin C; Forano E; Mosoni P
    FEMS Microbiol Lett; 2009 May; 294(2):239-44. PubMed ID: 19341390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of glycosylation on the extracellular domain of the Ag43 bacterial autotransporter: enhanced stability and reduced cellular aggregation.
    Knudsen SK; Stensballe A; Franzmann M; Westergaard UB; Otzen DE
    Biochem J; 2008 Jun; 412(3):563-77. PubMed ID: 18341480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rapid evolution of signal peptides is mainly caused by relaxed selection on non-synonymous and synonymous sites.
    Li YD; Xie ZY; Du YL; Zhou Z; Mao XM; Lv LX; Li YQ
    Gene; 2009 May; 436(1-2):8-11. PubMed ID: 19393172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergism of shrew-1's signal peptide and transmembrane segment required for plasma membrane localization.
    Resch E; Quaiser S; Quaiser T; Schneider G; Starzinski-Powitz A; Schreiner A
    Traffic; 2008 Aug; 9(8):1344-53. PubMed ID: 18485053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting and beyond: new roles for old signal sequences.
    Hegde RS
    Mol Cell; 2002 Oct; 10(4):697-8. PubMed ID: 12419211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal sequences get active.
    Sinning I; Wild K; Bange G
    Nat Chem Biol; 2009 Mar; 5(3):146-7. PubMed ID: 19219017
    [No Abstract]   [Full Text] [Related]  

  • 30. Domain organization of long autotransporter signal sequences.
    Hiss JA; Schneider G
    Bioinform Biol Insights; 2009 Dec; 3():189-204. PubMed ID: 20072671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage display extends its reach.
    Huber D; Beckwith J
    Nat Biotechnol; 2006 Jul; 24(7):793-4. PubMed ID: 16841063
    [No Abstract]   [Full Text] [Related]  

  • 32. Folding Control in the Path of Type 5 Secretion.
    Dautin N
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34064645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the Autochaperone Domain in the Type Va Secretion System (T5aSS): Prevalent Feature of Autotransporters with a β-Helical Passenger.
    Rojas-Lopez M; Zorgani MA; Kelley LA; Bailly X; Kajava AV; Henderson IR; Polticelli F; Pizza M; Rosini R; Desvaux M
    Front Microbiol; 2017; 8():2607. PubMed ID: 29375499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates.
    Braselmann E; Chaney JL; Champion MM; Clark PL
    PLoS One; 2016; 11(9):e0162922. PubMed ID: 27626276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion.
    Drobnak I; Braselmann E; Chaney JL; Leyton DL; Bernstein HD; Lithgow T; Luirink J; Nataro JP; Clark PL
    Mol Microbiol; 2015 Jan; 95(1):1-16. PubMed ID: 25345653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis.
    Leyton DL; Rossiter AE; Henderson IR
    Nat Rev Microbiol; 2012 Feb; 10(3):213-25. PubMed ID: 22337167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function.
    Dautin N
    Toxins (Basel); 2010 Jun; 2(6):1179-206. PubMed ID: 22069633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The extended signal peptide of the trimeric autotransporter EmaA of Aggregatibacter actinomycetemcomitans modulates secretion.
    Jiang X; Ruiz T; Mintz KP
    J Bacteriol; 2011 Dec; 193(24):6983-94. PubMed ID: 22001514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The bacterial intimins and invasins: a large and novel family of secreted proteins.
    Tsai JC; Yen MR; Castillo R; Leyton DL; Henderson IR; Saier MH
    PLoS One; 2010 Dec; 5(12):e14403. PubMed ID: 21203509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. YidC is involved in the biogenesis of the secreted autotransporter hemoglobin protease.
    Jong WS; ten Hagen-Jongman CM; Ruijter E; Orru RV; Genevaux P; Luirink J
    J Biol Chem; 2010 Dec; 285(51):39682-90. PubMed ID: 20959450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.