These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 18258330)
1. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. Hwang YK; Endres AL; Piggott SD; Parker BL J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330 [TBL] [Abstract][Full Text] [Related]
2. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model. Broholm K; Feenstra S; Cherry JA Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112 [TBL] [Abstract][Full Text] [Related]
3. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Parker BL; Cherry JA; Chapman SW J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a heterogeneous DNAPL source zone in the Borden aquifer using partitioning and interfacial tracers: residual morphologies and background sorption. Hartog N; Cho J; Parker BL; Annable MD J Contam Hydrol; 2010 Jun; 115(1-4):79-89. PubMed ID: 20434791 [TBL] [Abstract][Full Text] [Related]
5. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Parker BL; Chapman SW; Guilbeault MA J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583 [TBL] [Abstract][Full Text] [Related]
6. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. Steelman CM; Klazinga DR; Cahill AG; Endres AL; Parker BL J Contam Hydrol; 2017 Oct; 205():12-24. PubMed ID: 28865808 [TBL] [Abstract][Full Text] [Related]
7. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. Heiderscheidt JL; Siegrist RL; Illangasekare TH J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622 [TBL] [Abstract][Full Text] [Related]
8. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
9. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW; Soga K; Illangasekare T J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832 [TBL] [Abstract][Full Text] [Related]
10. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. Maji R; Sudicky EA J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427 [TBL] [Abstract][Full Text] [Related]
11. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation. Rivett MO; Allen-King RM J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944 [TBL] [Abstract][Full Text] [Related]
12. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496 [TBL] [Abstract][Full Text] [Related]
13. Time-lapse dielectric properties monitoring of the flow cell during DNAPL contamination and remediation processes by full-waveform inversion of GPR data using particle swarm optimization: A laboratory study. Kaplanvural İ; Pekşen E; Akyol NH; Durdağ D J Contam Hydrol; 2024 Nov; 267():104443. PubMed ID: 39396458 [TBL] [Abstract][Full Text] [Related]
14. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. Zuurbier KG; Hartog N; Valstar J; Post VE; van Breukelen BM J Contam Hydrol; 2013 Apr; 147():1-13. PubMed ID: 23435174 [TBL] [Abstract][Full Text] [Related]
15. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL. Johnston CD; Davis GB; Bastow TP; Annable MD; Trefry MG; Furness A; Geste Y; Woodbury RJ; Rao PS; Rhodes S J Contam Hydrol; 2013 Jan; 144(1):122-37. PubMed ID: 23247401 [TBL] [Abstract][Full Text] [Related]
16. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
17. Evaluating LNAPL contamination using GPR signal attenuation analysis and dielectric property measurements: practical implications for hydrological studies. Cassidy NJ J Contam Hydrol; 2007 Oct; 94(1-2):49-75. PubMed ID: 17601633 [TBL] [Abstract][Full Text] [Related]
18. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones. Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740 [TBL] [Abstract][Full Text] [Related]
19. Solvent release into a sandy aquifer 3: enhanced dissolution by methanol injection. Broholm K Environ Technol; 2007 Jan; 28(1):11-8. PubMed ID: 17283944 [TBL] [Abstract][Full Text] [Related]
20. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal. Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]