BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18258589)

  • 1. Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain.
    Sprague CR; Fraley TS; Jang HS; Lal S; Greenwood JA
    J Biol Chem; 2008 Apr; 283(14):9217-23. PubMed ID: 18258589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry.
    Full SJ; Deinzer ML; Ho PS; Greenwood JA
    Protein Sci; 2007 Dec; 16(12):2597-604. PubMed ID: 17965186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoinositides differentially regulate alpha-actinin flexibility and function.
    Corgan AM; Singleton C; Santoso CB; Greenwood JA
    Biochem J; 2004 Mar; 378(Pt 3):1067-72. PubMed ID: 14670080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin.
    Greenwood JA; Theibert AB; Prestwich GD; Murphy-Ullrich JE
    J Cell Biol; 2000 Aug; 150(3):627-42. PubMed ID: 10931873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoinositide binding regulates alpha-actinin dynamics: mechanism for modulating cytoskeletal remodeling.
    Fraley TS; Pereira CB; Tran TC; Singleton C; Greenwood JA
    J Biol Chem; 2005 Apr; 280(15):15479-82. PubMed ID: 15710624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts.
    Dourdin N; Bhatt AK; Dutt P; Greer PA; Arthur JS; Elce JS; Huttenlocher A
    J Biol Chem; 2001 Dec; 276(51):48382-8. PubMed ID: 11602605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxyl tail of alpha-actinin-4 regulates its susceptibility to m-calpain and thus functions in cell migration and spreading.
    Shao H; Travers T; Camacho CJ; Wells A
    Int J Biochem Cell Biol; 2013 Jun; 45(6):1051-63. PubMed ID: 23466492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the actin binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alpha-actinin.
    Franzot G; Sjöblom B; Gautel M; Djinović Carugo K
    J Mol Biol; 2005 Apr; 348(1):151-65. PubMed ID: 15808860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of alpha-actinin 4 upon epidermal growth factor exposure regulates its interaction with actin.
    Shao H; Wu C; Wells A
    J Biol Chem; 2010 Jan; 285(4):2591-600. PubMed ID: 19920151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The calpain 1-alpha-actinin interaction. Resting complex between the calcium-dependent protease and its target in cytoskeleton.
    Raynaud F; Bonnal C; Fernandez E; Bremaud L; Cerutti M; Lebart MC; Roustan C; Ouali A; Benyamin Y
    Eur J Biochem; 2003 Dec; 270(23):4662-70. PubMed ID: 14622253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain.
    Bhatt A; Kaverina I; Otey C; Huttenlocher A
    J Cell Sci; 2002 Sep; 115(Pt 17):3415-25. PubMed ID: 12154072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.
    Gokhin DS; Tierney MT; Sui Z; Sacco A; Fowler VM
    Mol Biol Cell; 2014 Mar; 25(6):852-65. PubMed ID: 24430868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide binding inhibits alpha-actinin bundling activity.
    Fraley TS; Tran TC; Corgan AM; Nash CA; Hao J; Critchley DR; Greenwood JA
    J Biol Chem; 2003 Jun; 278(26):24039-45. PubMed ID: 12716899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate.
    Banfić H; Downes CP; Rittenhouse SE
    J Biol Chem; 1998 May; 273(19):11630-7. PubMed ID: 9565582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration.
    Perrin BJ; Amann KJ; Huttenlocher A
    Mol Biol Cell; 2006 Jan; 17(1):239-50. PubMed ID: 16280362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Regulation of α-Actinin's Calponin Homology Domains on F-Actin.
    Shams H; Golji J; Garakani K; Mofrad MR
    Biophys J; 2016 Mar; 110(6):1444-55. PubMed ID: 27028653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the alpha-actinin/actin interaction in the Z-disk by using calpain.
    Goll DE; Dayton WR; Singh I; Robson RM
    J Biol Chem; 1991 May; 266(13):8501-10. PubMed ID: 2022664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyro3-mediated phosphorylation of ACTN4 at tyrosines is FAK-dependent and decreases susceptibility to cleavage by m-Calpain.
    Shao H; Wang A; Lauffenburger D; Wells A
    Int J Biochem Cell Biol; 2018 Feb; 95():73-84. PubMed ID: 29274473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic study of calpain interacting proteins during skeletal muscle aging.
    Brulé C; Dargelos E; Diallo R; Listrat A; Béchet D; Cottin P; Poussard S
    Biochimie; 2010 Dec; 92(12):1923-33. PubMed ID: 20850499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain.
    Manna D; Bhardwaj N; Vora MS; Stahelin RV; Lu H; Cho W
    J Biol Chem; 2008 Sep; 283(38):26047-58. PubMed ID: 18621733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.