These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 18258914)

  • 1. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating electricity while walking with loads.
    Rome LC; Flynn L; Goldman EM; Yoo TD
    Science; 2005 Sep; 309(5741):1725-8. PubMed ID: 16151012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.
    Shepertycky M; Li Q
    PLoS One; 2015; 10(6):e0127635. PubMed ID: 26039493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysics. Harvesting energy by improving the economy of human walking.
    Kuo AD
    Science; 2005 Sep; 309(5741):1686-7. PubMed ID: 16151001
    [No Abstract]   [Full Text] [Related]  

  • 9. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myoelectric Control for Adaptable Biomechanical Energy Harvesting.
    Selinger JC; Donelan JM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):364-73. PubMed ID: 26841402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg.
    Doke J; Kuo AD
    J Exp Biol; 2007 Jul; 210(Pt 13):2390-8. PubMed ID: 17575044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.
    Yeo J; Ryu MH; Yang Y
    Sensors (Basel); 2015 Jul; 15(7):15853-67. PubMed ID: 26151204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.
    Riemer R; Shapiro A
    J Neuroeng Rehabil; 2011 Apr; 8():22. PubMed ID: 21521509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removing energy with an exoskeleton reduces the metabolic cost of walking.
    Shepertycky M; Burton S; Dickson A; Liu YF; Li Q
    Science; 2021 May; 372(6545):957-960. PubMed ID: 34045349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and energetics of step-to-step transitions isolated from human walking.
    Soo CH; Donelan JM
    J Exp Biol; 2010 Dec; 213(Pt 24):4265-71. PubMed ID: 21113008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an energy harvesting backpack and performance evaluation.
    Shepertycky M; Zhang JT; Liu YF; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650409. PubMed ID: 24187228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical power and efficiency of level walking with different stride rates.
    Umberger BR; Martin PE
    J Exp Biol; 2007 Sep; 210(Pt 18):3255-65. PubMed ID: 17766303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a prosthetic swing-phase controller with electrical power generation.
    Andrysek J; Liang T; Steinnagel B
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):390-6. PubMed ID: 19497830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting biomechanical energy or carrying batteries? An evaluation method based on a comparison of metabolic power.
    Schertzer E; Riemer R
    J Neuroeng Rehabil; 2015 Mar; 12():30. PubMed ID: 25879232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.