These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18259254)

  • 1. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory.
    Contini D; Martelli F; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4587-99. PubMed ID: 18259254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results.
    Martelli F; Contini D; Taddeucci A; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4600-12. PubMed ID: 18259255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the scattering delay on time-dependent photon migration in turbid media.
    Yaroslavsky IV; Yaroslavsky AN; Tuchin VV; Schwarzmaier HJ
    Appl Opt; 1997 Sep; 36(25):6529-38. PubMed ID: 18259514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon migration in turbid media using a cumulant approximation to radiative transfer.
    Xu M; Cai W; Lax M; Alfano RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066609. PubMed ID: 12188853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of boundary conditions on photon diffusion through an interface between two turbid media with different refractive indices.
    Shendeleva ML
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1521-8. PubMed ID: 20596136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
    Martelli F; Sassaroli A; Yamada Y; Zaccanti G
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):71-80. PubMed ID: 11778735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media.
    De Nicola S; Esposito R; Lepore M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021901. PubMed ID: 14525000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media.
    Edjlali E; Bérubé-Lauzière Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry.
    Liemert A; Kienle A
    Opt Lett; 2011 Oct; 36(20):4041-3. PubMed ID: 22002379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of heterogeneities embedded within a turbid slab media using time- and frequency-domain methods: application to the mammography.
    Piron V; L'Huillier JP
    Lasers Med Sci; 2006 Jul; 21(2):67-73. PubMed ID: 16596457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary conditions for the diffusion equation in radiative transfer.
    Haskell RC; Svaasand LO; Tsay TT; Feng TC; McAdams MS; Tromberg BJ
    J Opt Soc Am A Opt Image Sci Vis; 1994 Oct; 11(10):2727-41. PubMed ID: 7931757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling boundary measurements of scattered light using the corrected diffusion approximation.
    Lehtikangas O; Tarvainen T; Kim AD
    Biomed Opt Express; 2012 Mar; 3(3):552-71. PubMed ID: 22435102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit solutions of the radiative transport equation in the P3 approximation.
    Liemert A; Kienle A
    Med Phys; 2014 Nov; 41(11):111916. PubMed ID: 25370649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer.
    Kim AD; Ishimaru A
    Appl Opt; 1998 Aug; 37(22):5313-9. PubMed ID: 18286012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correcting the diffusion approximation at the boundary.
    Kim AD
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1007-15. PubMed ID: 21643385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium.
    Cong W; Wang LV; Wang G
    Biomed Eng Online; 2004 May; 3(1):12. PubMed ID: 15125780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.