These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18259255)

  • 1. Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results.
    Martelli F; Contini D; Taddeucci A; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4600-12. PubMed ID: 18259255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory.
    Contini D; Martelli F; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4587-99. PubMed ID: 18259254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic model for ballistic photon detection in collimated transmittance measurements.
    Martelli F; Binzoni T
    Opt Express; 2018 Jan; 26(2):744-761. PubMed ID: 29401955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.
    Martelli F; Sassaroli A; Yamada Y; Zaccanti G
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):71-80. PubMed ID: 11778735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon migration in turbid media using a cumulant approximation to radiative transfer.
    Xu M; Cai W; Lax M; Alfano RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066609. PubMed ID: 12188853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media.
    De Nicola S; Esposito R; Lepore M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021901. PubMed ID: 14525000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the scattering delay on time-dependent photon migration in turbid media.
    Yaroslavsky IV; Yaroslavsky AN; Tuchin VV; Schwarzmaier HJ
    Appl Opt; 1997 Sep; 36(25):6529-38. PubMed ID: 18259514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.
    Cohen D; Stamnes S; Tanikawa T; Sommersten ER; Stamnes JJ; Lotsberg JK; Stamnes K
    Opt Express; 2013 Apr; 21(8):9592-614. PubMed ID: 23609670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the telegrapher's equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab.
    Kong SH; Shore JD
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):702-10. PubMed ID: 17301860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving analytically the simplified spherical harmonics equations in cylindrical turbid media.
    Edjlali E; Bérubé-Lauzière Y
    J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1633-1644. PubMed ID: 30182999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.
    Patterson MS; Chance B; Wilson BC
    Appl Opt; 1989 Jun; 28(12):2331-6. PubMed ID: 20555520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of boundary conditions on photon diffusion through an interface between two turbid media with different refractive indices.
    Shendeleva ML
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1521-8. PubMed ID: 20596136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.
    Shendeleva ML; Molloy JA
    Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit solutions of the radiative transport equation in the P3 approximation.
    Liemert A; Kienle A
    Med Phys; 2014 Nov; 41(11):111916. PubMed ID: 25370649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P
    Liemert A; Martelli F; Binzoni T; Kienle A
    Appl Opt; 2019 May; 58(15):4143-4148. PubMed ID: 31158171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency domain photon migration in the delta- P1 approximation: analysis of ballistic, transport, and diffuse regimes.
    You JS; Hayakawa CK; Venugopalan V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021903. PubMed ID: 16196600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.