These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18259335)

  • 1. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.
    Arnott WP; Schmitt C; Liu Y; Hallett J
    Appl Opt; 1997 Jul; 36(21):5205-16. PubMed ID: 18259335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrieval of water cloud properties from carbon dioxide lidar soundings.
    Piatt CM; Takashima T
    Appl Opt; 1987 Apr; 26(7):1257-63. PubMed ID: 20454313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extinction efficiency in the infrared (2-18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice.
    Arnott WP; Dong YY; Hallett J
    Appl Opt; 1995 Jan; 34(3):541-51. PubMed ID: 20963149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared extinction spectra of some common liquid aerosols.
    Carlon HR; Anderson DH; Milham ME; Tarnove TL; Frickel RH; Sindoni I
    Appl Opt; 1977 Jun; 16(6):1598-605. PubMed ID: 20168760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on Cloud Phase Detemination Using Infrared Emissivity Spectrum Data (2): Retrieval of Cloud Effective Radius and Water Path].
    Liu L; Sun XJ; Gao TC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3895-906. PubMed ID: 30235406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared extinction spectra and optical constants of supercooled water droplets.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Schurath U
    J Phys Chem A; 2005 Aug; 109(32):7099-112. PubMed ID: 16834073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrieval of trace gases from aerosol-influenced infrared transmission spectra observed by low-spectral-resolution Fourier-transform spectrometers.
    Uemura N; Kuriki S; Nobuta K; Yokota T; Nakajima H; Sugita T; Sasano Y
    Appl Opt; 2005 Jan; 44(3):455-66. PubMed ID: 15717835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.
    Nájera JJ; Fochesatto JG; Last DJ; Percival CJ; Horn AB
    Rev Sci Instrum; 2008 Dec; 79(12):124102. PubMed ID: 19123581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of cloud microphysical properties by laser backscattering and extinction measurements.
    Dubinsky RH; Carswell AI; Pal SR
    Appl Opt; 1985 Jun; 24(11):1614-22. PubMed ID: 18223765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inversion of water cloud lidar returns using the azimuthal dependence of the cross-polarization signal.
    Cao X; Roy G; Tremblay G
    Opt Lett; 2018 Feb; 43(3):451-454. PubMed ID: 29400812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.
    Sassen K; Zhao H; Dodd GC
    Appl Opt; 1992 May; 31(15):2914-23. PubMed ID: 20725225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared and visible fourier-transform spectra of sulfuric-acid-water aerosols at 230 and 294 K.
    Heathfield AE; Newnham DA; Ballard J; Grainger RG; Lambert A
    Appl Opt; 1999 Oct; 38(30):6408-20. PubMed ID: 18324171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. 1. Analysis of aerosol extinction spectra from the AMON and SALOMON balloonborne spectrometers.
    Berthet G; Renard JB; Brogniez C; Robert C; Chartier M; Pirre M
    Appl Opt; 2002 Dec; 41(36):7522-39. PubMed ID: 12510916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements.
    Bissonnette LR; Roy G; Poutier L; Cober SG; Isaac GA
    Appl Opt; 2002 Oct; 41(30):6307-24. PubMed ID: 12396180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared optical properties of phosphorus-derived smoke.
    Milham ME; Anderson DH; Frickel RH
    Appl Opt; 1982 Jul; 21(14):2501-7. PubMed ID: 20396064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared measurements of the atmospheric emission over the South Pole using a radiometrically calibrated Fourier transform spectrometer.
    Van Allen R; Murcray FJ; Liu X
    Appl Opt; 1996 Mar; 35(9):1523-30. PubMed ID: 21085269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiply scattered aerosol lidar returns: inversion method and comparison with in situ measurements.
    Bissonnette LR; Hutt DL
    Appl Opt; 1995 Oct; 34(30):6959-75. PubMed ID: 21060558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measured Infrared Spectral Extinction for Aerosolized Bacillus subtilis var. niger Endospores from 3 to 13 mum.
    Gurton KP; Ligon D; Kvavilashvili R
    Appl Opt; 2001 Sep; 40(25):4443-8. PubMed ID: 18360483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.