These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18259350)

  • 1. Stability of giant Fabry-Perot cavities of interferometric gravitational-wave detectors.
    Dhurandhar SV; Hello P; Sathyaprakash BS; Vinet JY
    Appl Opt; 1997 Aug; 36(22):5325-34. PubMed ID: 18259350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation pressure and stability of interferometric gravitational-wave detectors.
    Chickarmane V; Dhurandhar SV; Barillet R; Hello P; Vinet JY
    Appl Opt; 1998 May; 37(15):3236-45. PubMed ID: 18273275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal extraction in a power-recycled michelson interferometer with fabry-perot arm cavities by use of a multiple-carrier frontal modulation scheme.
    Sigg D; Mavalvala N; Giaime J; Fritschel P; Shoemaker D
    Appl Opt; 1998 Aug; 37(24):5687-93. PubMed ID: 18286055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors.
    De Rosa M; Conti L; Cerdonio M; Pinard M; Marin F
    Phys Rev Lett; 2002 Dec; 89(23):237402. PubMed ID: 12485040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ correction of mirror surface to reduce round-trip losses in Fabry-Perot cavities.
    Vajente G
    Appl Opt; 2014 Mar; 53(7):1459-65. PubMed ID: 24663376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control and tuning of a suspended Fabry-Perot cavity using digitally enhanced heterodyne interferometry.
    Miller J; Ngo S; Mullavey AJ; Slagmolen BJ; Shaddock DA; McClelland DE
    Opt Lett; 2012 Dec; 37(23):4952-4. PubMed ID: 23202101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator.
    Tarallo MG; Miller J; Agresti J; D'Ambrosio E; DeSalvo R; Forest D; Lagrange B; Mackowsky JM; Michel C; Montorio JL; Morgado N; Pinard L; Remilleux A; Simoni B; Willems P
    Appl Opt; 2007 Sep; 46(26):6648-54. PubMed ID: 17846659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Duality relation between nonspherical mirror optical cavities and its application to gravitational-wave detectors.
    Agresti J; Chen Y; D'Ambrosio E; Savov P
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1818-27. PubMed ID: 23201935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers.
    Mullavey AJ; Slagmolen BJ; Miller J; Evans M; Fritschel P; Sigg D; Waldman SJ; Shaddock DA; McClelland DE
    Opt Express; 2012 Jan; 20(1):81-9. PubMed ID: 22274331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams.
    Kasprzack M; Canuel B; Cavalier F; Day R; Genin E; Marque J; Sentenac D; Vajente G
    Appl Opt; 2013 Apr; 52(12):2909-16. PubMed ID: 23669703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modal frequency degeneracy in thermally loaded optical resonators.
    Bullington AL; Lantz BT; Fejer MM; Byer RL
    Appl Opt; 2008 May; 47(15):2840-51. PubMed ID: 18493291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High bandwidth frequency lock of a rigid tunable optical cavity.
    Millo J; Merzougui M; Di Pace S; Chaibi W
    Appl Opt; 2014 Nov; 53(32):7761-72. PubMed ID: 25403002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward optomechanical parametric instability prediction in ground-based gravitational wave detectors.
    Cohen DE; Allocca A; Bogaert G; Puppo P; Jacqmin T
    Appl Opt; 2021 Sep; 60(27):8540-8549. PubMed ID: 34612957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavefront distortion of the reflected and diffracted beams produced by the thermoelastic deformation of a diffraction grating heated by a Gaussian laser beam.
    Lu PP; Bullington AL; Beyersdorf P; Traeger S; Mansell J; Beausoleil R; Gustafson EK; Byer RL; Fejer MM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):659-68. PubMed ID: 17301855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors.
    Barriga P; Bhawal B; Ju L; Blair DG
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1731-41. PubMed ID: 17491642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferometric antenna response for gravitational-wave detection.
    Fabbro RD; Montelatici V
    Appl Opt; 1995 Jul; 34(21):4380-96. PubMed ID: 21052273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.
    Cumming A; Jones R; Barton M; Cagnoli G; Cantley CA; Crooks DR; Hammond GD; Heptonstall A; Hough J; Rowan S; Strain KA
    Rev Sci Instrum; 2011 Apr; 82(4):044502. PubMed ID: 21529026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axion Dark Matter Search with Interferometric Gravitational Wave Detectors.
    Nagano K; Fujita T; Michimura Y; Obata I
    Phys Rev Lett; 2019 Sep; 123(11):111301. PubMed ID: 31573257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic alignment-control system for a suspended Fabry-Perot cavity.
    Kawabe K; Mio N; Tsubono K
    Appl Opt; 1994 Aug; 33(24):5498-505. PubMed ID: 20935942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.