These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18259393)

  • 1. Image-scaling problem in the optical fractional Fourier transform.
    Liu S; Ren H; Zhang J; Zhang X
    Appl Opt; 1997 Aug; 36(23):5671-4. PubMed ID: 18259393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical implementations of two-dimensional fractional fourier transforms and linear canonical transforms with arbitrary parameters.
    Sahin A; Ozaktas HM; Mendlovic D
    Appl Opt; 1998 Apr; 37(11):2130-41. PubMed ID: 18273135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical image encryption based on multifractional Fourier transforms.
    Zhu B; Liu S; Ran Q
    Opt Lett; 2000 Aug; 25(16):1159-61. PubMed ID: 18066153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified fractional Fourier transforms.
    Pei SC; Ding JJ
    J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2355-67. PubMed ID: 11140496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of quantum and classical discrete fractional Fourier transforms.
    Weimann S; Perez-Leija A; Lebugle M; Keil R; Tichy M; Gräfe M; Heilmann R; Nolte S; Moya-Cessa H; Weihs G; Christodoulides DN; Szameit A
    Nat Commun; 2016 Mar; 7():11027. PubMed ID: 27006089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Fourier transforms, symmetrical lens systems, and their cardinal planes.
    Moreno I; Sánchez-López MM; Ferreira C; Mateos F
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1930-6. PubMed ID: 17728815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random fractional Fourier transform.
    Liu Z; Liu S
    Opt Lett; 2007 Aug; 32(15):2088-90. PubMed ID: 17671545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display.
    Mendlovic D; Dorsch RG; Lohmann AW; Zalevsky Z; Ferreira C
    Appl Opt; 1996 Jul; 35(20):3925-9. PubMed ID: 21102794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optical Fourier transform coprocessor with direct phase determination.
    Macfaden AJ; Gordon GSD; Wilkinson TD
    Sci Rep; 2017 Oct; 7(1):13667. PubMed ID: 29057903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascading the multiple stages of optical fractional Fourier transforms under different variable scales.
    Liu S; Wu J; Li C
    Opt Lett; 1995 Jun; 20(12):1415-7. PubMed ID: 19862033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures.
    Srivastava HM; Lone WZ; Shah FA; Zayed AI
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of diffractive optical elements for the fractional Fourier transform domain: phase-space approach.
    Testorf M
    Appl Opt; 2006 Jan; 45(1):76-82. PubMed ID: 16422322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized joint fractional fourier transform correlators: a compact approach.
    Kuo CJ; Luo Y
    Appl Opt; 1998 Dec; 37(35):8270-6. PubMed ID: 18301650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment on "double-lens extended fractional Fourier transform".
    Liu Z; Liu S
    Appl Opt; 2008 Feb; 47(5):617-8. PubMed ID: 18268770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical encryption by double-random phase encoding in the fractional Fourier domain.
    Unnikrishnan G; Joseph J; Singh K
    Opt Lett; 2000 Jun; 25(12):887-9. PubMed ID: 18064216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable two-dimensional optical fractional Fourier processor.
    Rodrigo JA; Alieva T; Calvo ML
    Opt Express; 2009 Mar; 17(7):4976-83. PubMed ID: 19333257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical image encryption based on the multiple-parameter fractional Fourier transform.
    Tao R; Lang J; Wang Y
    Opt Lett; 2008 Mar; 33(6):581-3. PubMed ID: 18347716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-controlled variable-order optical fractional Fourier transform.
    Hennelly B; Kelly D; Sheridan JT
    Opt Lett; 2004 Mar; 29(5):427-9. PubMed ID: 15005181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image deconvolution by a logarithmic/exponential nonlinear joint transform process.
    Javidi B; Ruiz C; Ruiz J
    Appl Opt; 1990 Feb; 29(5):685-90. PubMed ID: 20556166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle.
    Wang X; Zhao D
    Appl Opt; 2013 Sep; 52(25):6170-8. PubMed ID: 24085074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.