These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18259487)

  • 1. Multilayer antireflection coatings for the visible and near-infrared regions.
    Shanbhogue HG; Nagendra CL; Annapurna MN; Kumar SA; Thutupalli GK
    Appl Opt; 1997 Sep; 36(25):6339-51. PubMed ID: 18259487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.
    Jayasinghe RC; Perera AG; Zhu H; Zhao Y
    Opt Lett; 2012 Oct; 37(20):4302-4. PubMed ID: 23073444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the average residual reflectance of broadband antireflection coatings.
    Tikhonravov AV; Trubetskov MK; Amotchkina TV; Dobrowolski JA
    Appl Opt; 2008 May; 47(13):C124-30. PubMed ID: 18449232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitin Nanofibers Extracted from Crab Shells in Broadband Visible Antireflection Coatings with Controlling Layer-by-Layer Deposition and the Application for Durable Antifog Surfaces.
    Manabe K; Tanaka C; Moriyama Y; Tenjimbayashi M; Nakamura C; Tokura Y; Matsubayashi T; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31951-31958. PubMed ID: 27801561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-layer broadband antireflection coatings for grazing incidence angles.
    Monga JC
    Appl Opt; 1992 Feb; 31(4):546-53. PubMed ID: 20720648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal antireflection coatings for substrates for the visible spectral region.
    Dobrowolski JA; Sullivan BT
    Appl Opt; 1996 Sep; 35(25):4993-7. PubMed ID: 21102926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting antireflection coatings with low polarization dependent loss for telecommunication applications.
    Dobrowolski J; Ford J; Sullivan B; Lu L; Osborne N
    Opt Express; 2004 Dec; 12(25):6258-69. PubMed ID: 19488272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.
    Schubert MF; Mont FW; Chhajed S; Poxson DJ; Kim JK; Schubert EF
    Opt Express; 2008 Apr; 16(8):5290-8. PubMed ID: 18542630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates.
    Du Y; Luna LE; Tan WS; Rubner MF; Cohen RE
    ACS Nano; 2010 Jul; 4(7):4308-16. PubMed ID: 20536211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination.
    Zhang L; Li Y; Sun J; Shen J
    Langmuir; 2008 Oct; 24(19):10851-7. PubMed ID: 18767828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graded-Index Fluoropolymer Antireflection Coatings for Invisible Plastic Optics.
    Wang B; Ruud CJ; Price JS; Kim H; Giebink NC
    Nano Lett; 2019 Feb; 19(2):787-792. PubMed ID: 30626186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of antireflection coatings for optical waveguides.
    Yamada M; Ohmori Y; Takada K; Kobayashi M
    Appl Opt; 1991 Feb; 30(6):682-8. PubMed ID: 20582043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO
    Zhao W; Jia H; Wang Y; Wang Q; Wu H; Wang B
    Appl Opt; 2019 Mar; 58(9):2385-2392. PubMed ID: 31044940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics.
    Hosako I
    Appl Opt; 2003 Jul; 42(19):4045-8. PubMed ID: 12868846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance step-down AR coatings for high refractive-index IR materials.
    Dobrowolski JA; Ho F
    Appl Opt; 1982 Jan; 21(2):288-92. PubMed ID: 20372442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting achievable design performance of broadband antireflection coatings.
    Willey RR
    Appl Opt; 1993 Oct; 32(28):5447-51. PubMed ID: 20856354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflective coatings with enhanced adhesion strength.
    Khan SB; Wu H; Fei Z; Ning S; Zhang Z
    Nanoscale; 2017 Aug; 9(31):11047-11054. PubMed ID: 28604899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of Silica Nanoparticles in Sol-Gel Processes to Create Optical Coatings with Controllable Ultralow Refractive Indices.
    Chi F; Zeng Y; Liu C; Liang D; Li Y; Xie R; Pan N; Ding C
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16887-16895. PubMed ID: 32182423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Buried nanoantenna arrays: versatile antireflection coating.
    Kabiri A; Girgis E; Capasso F
    Nano Lett; 2013; 13(12):6040-7. PubMed ID: 24266700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow Index SiO
    Ruud CJ; Cleri A; Maria JP; Giebink NC
    Nano Lett; 2022 Sep; 22(18):7358-7362. PubMed ID: 36094866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.