These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18259535)

  • 1. Diffraction effects in single- and two-laser photothermal lens spectroscopy.
    Bialkowski SE; Chartier A
    Appl Opt; 1997 Sep; 36(27):6711-21. PubMed ID: 18259535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probe-beam diffraction in a pulsed top-hat beam thermal lens with a mode-mismatched configuration.
    Li B; Welsch E
    Appl Opt; 1999 Aug; 38(24):5241-9. PubMed ID: 18324024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat coupling effect on photothermal detection with a moving Gaussian excitation beam.
    Dong J; Lu R
    Appl Opt; 2019 Nov; 58(31):8695-8701. PubMed ID: 31873350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accounting for absorption saturatio effects in pulsed infrared laser-excited photothermal spectroscopy.
    Bialkowski SE
    Appl Opt; 1993 Jun; 32(18):3177-89. PubMed ID: 20829931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state absorption rate models for use in relaxation rate studies with continuous laser excited photothermal lens spectrometry.
    Bialkowski SE
    Photochem Photobiol Sci; 2003 Jul; 2(7):779-87. PubMed ID: 12911227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-lens diffraction around a single heated nano particle.
    Selmke M; Braun M; Cichos F
    Opt Express; 2012 Mar; 20(7):8055-70. PubMed ID: 22453477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Photoreactive Barium Titanate (BaTiO₃) Beam Fanning to the Photothermal Mirror Technique: An Experimental Analysis.
    Zanuto VS; Capeloto OA; Lukasievicz GV; Herculano LS; Malacarne LC; Astrath NG; Bialkowski SE
    Appl Spectrosc; 2015 Jul; 69(7):794-801. PubMed ID: 26037040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Thermo-Reflectivity Coefficient Influence Using Photothermal Pump-Probe Techniques.
    Zanuto VS; Capeloto OA; Sandrini M; Malacarne LC; Astrath NGC; Bialkowski SE
    Appl Spectrosc; 2017 May; 71(5):970-976. PubMed ID: 27864447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory.
    Power JF
    Appl Opt; 1990 Jan; 29(1):52-63. PubMed ID: 20556068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual detection of single-nanometer-sized particles in liquid by photothermal microscope.
    Mawatari K; Kitamori T; Sawada T
    Anal Chem; 1998 Dec; 70(23):5037-41. PubMed ID: 21644684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the optimum optical design for pulsed-laser crossed-beam thermal lens spectrometry in infinite and finite samples.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):863-72. PubMed ID: 15036097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed laser excited photothermal lens spectrometry of CdSxSe(1-x) doped silica glasses.
    Joshi PR; Dada OO; Bialkowski SE
    Appl Spectrosc; 2009 Jul; 63(7):815-21. PubMed ID: 19589220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of BaTiO3 optical novelty filter and photothermal lensing configurations in photothermal experiments.
    Kalaskar SD; Bialkowski SE
    Anal Chem; 1992 Sep; 64(17):1824-30. PubMed ID: 1416037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermal lens aberration effects in two laser thermal lens spectrophotometry.
    Bialkowski SE
    Appl Opt; 1985 Sep; 24(17):2792-6. PubMed ID: 18223956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.