These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18259557)

  • 1. Dual-wavelength diode-seeded Ti:sapphire laser for differential absorption lidar applications.
    Yu J; Rambaldi P; Wolf JP
    Appl Opt; 1997 Sep; 36(27):6864-8. PubMed ID: 18259557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation.
    Ertel K; Linné H; Bösenberg J
    Appl Opt; 2005 Aug; 44(24):5120-6. PubMed ID: 16121798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronous, dual-wavelength, injection-seeded amplification of 5-ns pulses in a flash-lamp-pumped Ti:sapphire laser.
    Tian C; Walther T; Nicolaescu R; Pan XJ; Liao Y; Fry ES
    Opt Lett; 1999 Nov; 24(21):1496-8. PubMed ID: 18079844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronous dual-wavelength operation of a self-injection-seeded narrow-linewidth flash-lamp-pumped Q-switched Ti:Al2O3 laser.
    Suzuki H; Kuribayashi O; Kannari F
    Opt Lett; 1997 Nov; 22(22):1710-2. PubMed ID: 18188343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.
    Wagner G; Behrendt A; Wulfmeyer V; Späth F; Schiller M
    Appl Opt; 2013 Apr; 52(11):2454-69. PubMed ID: 23670775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar.
    Wulfmeyer V; Bösenberg J
    Opt Lett; 1996 Aug; 21(15):1150-2. PubMed ID: 19876282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-switching system for injection seeding of a high-power Ti:sapphire laser.
    Khalesifard HR; Fix A; Ehret G; Schiller M; Wulfmeyer V
    Rev Sci Instrum; 2009 Jul; 80(7):073110. PubMed ID: 19655946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transverse-pumping approach for a powerful single-mode Ti:sapphire laser for near infrared lidar applications.
    Vogelmann H; Speidel J; Perfahl M; Trickl T
    Appl Opt; 2022 Oct; 61(29):8553-8562. PubMed ID: 36255987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power, efficient, low-noise, continuous-wave all-solid-state Ti:sapphire laser.
    Tsunekane M; Taguchi N; Inaba H
    Opt Lett; 1996 Dec; 21(23):1912-4. PubMed ID: 19881843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.
    Wulfmeyer V
    Appl Opt; 1998 Jun; 37(18):3804-24. PubMed ID: 18273351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-wavelength injection-seeded Q-switched Ho:YLF laser for CO
    Wang Y; Dai T; Liu X; Ju Y; Yao B
    Opt Lett; 2019 Dec; 44(24):6049-6052. PubMed ID: 32628216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements.
    Elsayed KA; DeYoung RJ; Petway LB; Edwards WC; Barnes JC; Elsayed-Ali HE
    Appl Opt; 2003 Nov; 42(33):6650-60. PubMed ID: 14658468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injection-seeded pulsed alexandrite laser for differential absorption lidar application.
    Bruneau D; des Lions TA; Quaglia P; Pelon J
    Appl Opt; 1994 Jun; 33(18):3941-50. PubMed ID: 20935740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High energy widely tunable narrow-linewidth Ti:sapphire laser using combined-cavity configuration.
    Lv R; Teng H; Zhu J; Wei Z
    Opt Express; 2022 May; 30(10):16289-16296. PubMed ID: 36221474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injection-seeded titanium-doped-sapphire laser.
    Raymond TD; Smith AV
    Opt Lett; 1991 Jan; 16(1):33-5. PubMed ID: 19773828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.
    Elsayed KA; Chen S; Petway LB; Meadows BL; Marsh WD; Edwards WC; Barnes JC; DeYoung RJ
    Appl Opt; 2002 May; 41(15):2734-9. PubMed ID: 12027160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise wavelength control of a single-frequency pulsed Ho:Tm:YLF laser.
    Koch GJ; Petros M; Yu J; Singh UN
    Appl Opt; 2002 Mar; 41(9):1718-21. PubMed ID: 11921801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement.
    Bruneau D; Cazeneuve H; Loth C; Pelon J
    Appl Opt; 1991 Sep; 30(27):3930-7. PubMed ID: 20706484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-seeding in a dual-cavity-type pulsed Ti:sapphire laser oscillator.
    Ko DK; Lim G; Kim SH; Cha BH; Lee J
    Opt Lett; 1995 Apr; 20(7):710-2. PubMed ID: 19859305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements.
    Munk A; Jungbluth B; Strotkamp M; Hoffmann HD; Poprawe R; Höffner J; Lübken FJ
    Opt Express; 2018 Jun; 26(12):14928-14935. PubMed ID: 30114797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.