These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18259562)

  • 1. Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters.
    Sydor M; Arnone RA
    Appl Opt; 1997 Sep; 36(27):6905-12. PubMed ID: 18259562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithm to derive inherent optical properties from remote sensing reflectance in turbid and eutrophic lakes.
    Xue K; Boss E; Ma R; Shen M
    Appl Opt; 2019 Nov; 58(31):8549-8564. PubMed ID: 31873359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters.
    Yang Q; Stramski D; He MX
    Appl Opt; 2013 Jan; 52(3):359-74. PubMed ID: 23338181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling.
    Loisel H; Stramski D; Mitchell BG; Fell F; Fournier-Sicre V; Lemasle B; Babin M
    Appl Opt; 2001 May; 40(15):2384-97. PubMed ID: 18357247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model for the interpretation of hyperspectral remote-sensing reflectance.
    Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO
    Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniqueness in remote sensing of the inherent optical properties of ocean water.
    Sydor M; Gould RW; Arnone RA; Haltrin VI; Goode W
    Appl Opt; 2004 Apr; 43(10):2156-62. PubMed ID: 15074426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters.
    Snyder WA; Arnone RA; Davis CO; Goode W; Gould RW; Ladner S; Lamela G; Rhea WJ; Stavn R; Sydor M; Weidemann A
    Appl Opt; 2008 Feb; 47(5):666-77. PubMed ID: 18268778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing approach for the estimation of particulate organic carbon in coastal waters based on suspended particulate concentration and particle median size.
    Wang F; Wang Y; Chen Y; Liu K
    Mar Pollut Bull; 2020 Sep; 158():111382. PubMed ID: 32568084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [New Algorithms to Separate the Contribution of Petroleum Substances and Suspended Particulate Matter on the Scattering Coefficient Spectrum from Mixed Water].
    Huang MF; Xing XF; Song QJ; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):205-11. PubMed ID: 30196588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectra of particulate backscattering in natural waters.
    Gordon HR; Lewis MR; McLean SD; Twardowski MS; Freeman SA; Voss KJ; Boynton GC
    Opt Express; 2009 Aug; 17(18):16192-208. PubMed ID: 19724619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of measurement uncertainties in observed variability in the spectral backscattering ratio: a case study in mineral-rich coastal waters.
    McKee D; Chami M; Brown I; Calzado VS; Doxaran D; Cunningham A
    Appl Opt; 2009 Aug; 48(24):4663-75. PubMed ID: 19696853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical Formulas for Estimating Backscattering and Absorption Coefficients in Complex Waters from Remote-Sensing Reflectance Spectra and Examples of Their Application.
    Woźniak SB; Darecki M; Sagan S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical closure in highly absorptive coastal waters: significance of inelastic scattering processes.
    Mukherjee S; Hedley JD; Fichot CG; Laliberté J; Bélanger S
    Opt Express; 2023 Oct; 31(21):35178-35199. PubMed ID: 37859255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea.
    Mohammadpour G; Pirasteh S
    Mar Pollut Bull; 2021 Dec; 173(Pt A):113104. PubMed ID: 34872170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
    Simis SG; Ylöstalo P; Kallio KY; Spilling K; Kutser T
    PLoS One; 2017; 12(4):e0173357. PubMed ID: 28384157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms.
    Woźniak SB; Stramski D
    Appl Opt; 2004 Jun; 43(17):3489-503. PubMed ID: 15219032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of inherent optical properties of Lake Ontario coastal waters.
    Bukata RP; Jerome JH; Bruton JE; Jain SC
    Appl Opt; 1979 Dec; 18(23):3926-32. PubMed ID: 20216727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measured and modeled radiometric quantities in coastal waters: toward a closure.
    Bulgarelli B; Zibordi G; Berthon JF
    Appl Opt; 2003 Sep; 42(27):5365-81. PubMed ID: 14526823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater.
    Risović D
    Appl Opt; 2002 Nov; 41(33):7092-101. PubMed ID: 12463257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.