These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18259563)

  • 1. Coherent imaging with two-dimensional focal-plane arrays: design and applications.
    Simpson ML; Bennett CA; Emery MS; Hutchinson DP; Miller GH; Richards RK; Sitter DN
    Appl Opt; 1997 Sep; 36(27):6913-20. PubMed ID: 18259563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic-array heterodyne detection: a single-element detector acts as an array.
    Strauss CE
    Opt Lett; 1994 Oct; 19(20):1609-11. PubMed ID: 19855597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent summation of spatially distorted laser Doppler signals by using a two-dimensional heterodyne detector array.
    Chan KP; Killinger DK
    Opt Lett; 1992 Sep; 17(17):1237-9. PubMed ID: 19798145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced detection of atmospheric-turbulence-distorted 1-microm coherent lidar returns using a two-dimensional heterodyne detector array.
    Chan KP; Killinger DK
    Opt Lett; 1991 Aug; 16(16):1219-21. PubMed ID: 19776924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent 1-microm lidar measurements of atmospheric-turbulence-induced spatial decorrelation using a multielement heterodyne detector array.
    Chan KP; Killinger DK
    Appl Opt; 1992 Apr; 31(10):1505-10. PubMed ID: 20720784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal heterodyne detector array size for 1-microm coherent lidar propagation through atmospheric turbulence.
    Sugimoto N; Chan KP; Killinger DK
    Appl Opt; 1991 Jun; 30(18):2609-16. PubMed ID: 20700250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target speckle correction using an array detector in heterodyne detection.
    Liu Y; Zeng X; Cao C; Feng Z; Lai Z
    Opt Lett; 2019 Dec; 44(24):5896-5899. PubMed ID: 32628179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
    Zhu L; Badugu R; Zhang D; Wang R; Descrovi E; Lakowicz JR
    Anal Biochem; 2017 Aug; 531():20-36. PubMed ID: 28527910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-fiber coherent laser image Lidar based on phase correction.
    Shi X; Sun J; Jang P; Lu W; Wang Q; Wang Q
    Opt Express; 2019 Sep; 27(19):26432-26445. PubMed ID: 31674525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation and control of narcissus phenomenon using nonsequential ray tracing. I. Staring camera in 3-5 microm waveband.
    Akram MN
    Appl Opt; 2010 Feb; 49(6):964-75. PubMed ID: 20174165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thomson's multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging.
    Toulemonde M; Basset O; Tortoli P; Cachard C
    Ultrasonics; 2015 Feb; 56():390-8. PubMed ID: 25262843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution Doppler-velocity estimation techniques for processing of coherent heterodyne pulsed lidar data.
    Gurdev LL; Dreischuh TN; Stoyanov DV
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):134-42. PubMed ID: 11151990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.
    Chan KP; Killinger DK; Sugimoto N
    Appl Opt; 1991 Jun; 30(18):2617-27. PubMed ID: 20700251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.
    Boppel S; Lisauskas A; Max A; Krozer V; Roskos HG
    Opt Lett; 2012 Feb; 37(4):536-8. PubMed ID: 22344098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer.
    Rommeluère S; Haïdar R; Guérineau N; Deschamps J; De Borniol E; Million A; Chamonal JP; Destefanis G
    Appl Opt; 2007 Mar; 46(9):1379-84. PubMed ID: 17334425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal 3D imaging sensor on a silicon photonics platform.
    Rogers C; Piggott AY; Thomson DJ; Wiser RF; Opris IE; Fortune SA; Compston AJ; Gondarenko A; Meng F; Chen X; Reed GT; Nicolaescu R
    Nature; 2021 Feb; 590(7845):256-261. PubMed ID: 33568821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.
    Russo P; Mettivier G
    Med Phys; 2011 Apr; 38(4):2099-115. PubMed ID: 21626943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reduction of the LO number for heterodyne coherent detection.
    Li X; Yu J; Chi N; Dong Z; Zhang J; Yu J
    Opt Express; 2012 Dec; 20(28):29613-9. PubMed ID: 23388788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient method for measuring the internal parameters of optical cameras based on optical fibres.
    Li J; Tian SF
    Sci Rep; 2017 Sep; 7(1):12479. PubMed ID: 28963464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.