These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18259578)

  • 1. Hazardous cloud imaging: a new way of using passive infrared.
    Flanigan DF
    Appl Opt; 1997 Sep; 36(27):7027-36. PubMed ID: 18259578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the limits of detection of hazardous vapors by passive infrared with the use of modtran.
    Flanigan DF
    Appl Opt; 1996 Oct; 35(30):6090-8. PubMed ID: 21127625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].
    Jiao Y; Xu L; Gao MG; Feng MC; Jin L; Tong JJ; Li S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jul; 32(7):1754-7. PubMed ID: 23016318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive remote sensing of pollutant clouds by Fourier-transform infrared spectrometry: signal-to-noise ratio as a function of spectral resolution.
    Harig R
    Appl Opt; 2004 Aug; 43(23):4603-10. PubMed ID: 15376439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system.
    Hu Y; Xu L; Shen X; Jin L; Xu H; Deng Y; Liu J; Liu W
    Appl Opt; 2021 Oct; 60(30):9396-9403. PubMed ID: 34807078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the passive infrared spectral signatures of bioaerosol and natural fog clouds immersed in the background atmosphere.
    Ligon D; Wetmore A; Gillespie P
    Opt Express; 2002 Sep; 10(18):909-19. PubMed ID: 19451945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation study of the remote sensing of optical and microphysical properties of cirrus clouds from satellite IR measurements.
    Xu L; Zhang J
    Appl Opt; 1995 May; 34(15):2724-36. PubMed ID: 21052418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Far-infrared sensor for cirrus (FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance.
    Vanek MD; Nolt IG; Tappan ND; Ade PA; Gannaway FC; Hamilton PA; Lee C; Davis JE; Predko S
    Appl Opt; 2001 May; 40(13):2169-76. PubMed ID: 18357224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Computer simulation for infrared spectra of pollution clouds with FTIS remote detection].
    Zhang J; Jiang FH; Gong YJ; Dai ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):617-9. PubMed ID: 12945311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].
    Cao YN; Wei HL; Dai CM; Zhang XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1208-13. PubMed ID: 26415429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive standoff detection of Bacillus subtilis aerosol by Fourier-transform infrared radiometry.
    Thériault JM; Puckrin E; Jensen JO
    Appl Opt; 2003 Nov; 42(33):6696-703. PubMed ID: 14658474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy.
    Spänkuch D; Döhler W; Güldner J; Schulz E
    Appl Opt; 1998 May; 37(15):3133-42. PubMed ID: 18273261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieving cloud geometrical extents from MIPAS/ENVISAT measurements with a 2-D tomographic approach.
    Castelli E; Dinelli BM; Carlotti M; Arnone E; Papandrea E; Ridolfi M
    Opt Express; 2011 Oct; 19(21):20704-21. PubMed ID: 21997081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.
    Shaw J; Nugent P; Pust N; Thurairajah B; Mizutani K
    Opt Express; 2005 Jul; 13(15):5807-17. PubMed ID: 19498585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems.
    Hu Y; Xu L; Xu H; Shen X; Deng Y; Xu H; Liu J; Liu W
    Opt Express; 2022 Jul; 30(14):25581-25596. PubMed ID: 36237085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.
    Liou KN; Ou SC; Takano Y; Cetola J
    Appl Opt; 2006 Sep; 45(26):6849-59. PubMed ID: 16926921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of atmospheric boundary layer turbulent temperature fluctuations on remote detection of vapors by passive infrared spectroscopy.
    Ifarraguerri A; Ben-David A
    Opt Express; 2008 Oct; 16(22):17366-82. PubMed ID: 18958020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
    Qiu YB; Shi LJ; Shi JC; Zhao SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):310-5. PubMed ID: 27209721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.
    Landesman BT; Matson CL
    Appl Opt; 2002 Dec; 41(36):7612-9. PubMed ID: 12510928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloud detection performance of spaceborne visible-to-infrared multispectral imagers.
    Nakajima TY; Tsuchiya T; Ishida H; Matsui TN; Shimoda H
    Appl Opt; 2011 Jun; 50(17):2601-16. PubMed ID: 21673762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.