These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18259793)

  • 21. Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Singer ML; Gao F; Foreman KB
    Clin Biomech (Bristol, Avon); 2017 Jun; 45():9-13. PubMed ID: 28431220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait of stance control orthosis users: the dynamic knee brace system.
    Irby SE; Bernhardt KA; Kaufman KR
    Prosthet Orthot Int; 2005 Dec; 29(3):269-82. PubMed ID: 16466156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint.
    Yakimovich T; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):361-9. PubMed ID: 17009496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses.
    Silver-Thorn B; Herrmann A; Current T; McGuire J
    Prosthet Orthot Int; 2011 Jun; 35(2):150-62. PubMed ID: 21515899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of an articulated ankle-foot orthosis with resistance-adjustable joints on lower limb joint kinematics and kinetics during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Hunt G; Gao F; LeCursi N; Lincoln LS; Foreman KB
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():47-55. PubMed ID: 30145413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T; Lemaire ED; Kofman J
    J Rehabil Res Dev; 2009; 46(2):257-67. PubMed ID: 19533539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait characteristics of post-poliomyelitis patients: standardization of quantitative data reporting.
    Portnoy S; Schwartz I
    Ann Phys Rehabil Med; 2013 Oct; 56(7-8):527-41. PubMed ID: 23891005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Safety and walking ability of KAFO users with the C-Brace
    Pröbsting E; Kannenberg A; Zacharias B
    Prosthet Orthot Int; 2017 Feb; 41(1):65-77. PubMed ID: 27151648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review.
    Rafiaei M; Bahramizadeh M; Arazpour M; Samadian M; Hutchins SW; Farahmand F; Mardani MA
    Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics.
    Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design, construction and evaluation of an electromechanical stance-control knee-ankle-foot orthosis.
    Yakimovich T; Kofman J; Lemaire E
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():2333-40. PubMed ID: 17282703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A knee and ankle flexing hybrid orthosis for paraplegic ambulation.
    Greene PJ; Granat MH
    Med Eng Phys; 2003 Sep; 25(7):539-45. PubMed ID: 12835066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of varying the plantarflexion resistance of an ankle-foot orthosis on knee joint kinematics in patients with stroke.
    Kobayashi T; Leung AK; Akazawa Y; Hutchins SW
    Gait Posture; 2013 Mar; 37(3):457-9. PubMed ID: 22921491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A quasi-passive compliant stance control Knee-Ankle-Foot Orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650471. PubMed ID: 24187288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.