BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18260641)

  • 1. Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles.
    Yandek LE; Pokorny A; Almeida PF
    Biochemistry; 2008 Mar; 47(9):3051-60. PubMed ID: 18260641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10.
    Yandek LE; Pokorny A; Almeida PF
    Biochemistry; 2009 Aug; 48(30):7342-51. PubMed ID: 19594111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers.
    Yandek LE; Pokorny A; Florén A; Knoelke K; Langel U; Almeida PF
    Biophys J; 2007 Apr; 92(7):2434-44. PubMed ID: 17218466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics studies of transportan 10 (tp10) interacting with a POPC lipid bilayer.
    Dunkin CM; Pokorny A; Almeida PF; Lee HS
    J Phys Chem B; 2011 Feb; 115(5):1188-98. PubMed ID: 21194203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane.
    Anko M; Majhenc J; Kogej K; Sillard R; Langel U; Anderluh G; Zorko M
    Biochim Biophys Acta; 2012 Mar; 1818(3):915-24. PubMed ID: 22240008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo.
    Bárány-Wallje E; Gaur J; Lundberg P; Langel U; Gräslund A
    FEBS Lett; 2007 May; 581(13):2389-93. PubMed ID: 17485081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein and siRNA delivery by transportan and transportan 10 into colorectal cancer cell lines.
    Wierzbicki PM; Kogut-Wierzbicka M; Ruczynski J; Siedlecka-Kroplewska K; Kaszubowska L; Rybarczyk A; Alenowicz M; Rekowski P; Kmiec Z
    Folia Histochem Cytobiol; 2014; 52(4):270-80. PubMed ID: 25511292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What determines the activity of antimicrobial and cytolytic peptides in model membranes.
    Clark KS; Svetlovics J; McKeown AN; Huskins L; Almeida PF
    Biochemistry; 2011 Sep; 50(37):7919-32. PubMed ID: 21870782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular uptake of transportan 10 and its analogs in live cells: Selectivity and structure-activity relationship studies.
    Song J; Kai M; Zhang W; Zhang J; Liu L; Zhang B; Liu X; Wang R
    Peptides; 2011 Sep; 32(9):1934-41. PubMed ID: 21827806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR.
    Lindberg M; Jarvet J; Langel U; Gräslund A
    Biochemistry; 2001 Mar; 40(10):3141-9. PubMed ID: 11258929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes.
    McKeown AN; Naro JL; Huskins LJ; Almeida PF
    Biochemistry; 2011 Feb; 50(5):654-62. PubMed ID: 21166473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles.
    Magzoub M; Kilk K; Eriksson LE; Langel U; Gräslund A
    Biochim Biophys Acta; 2001 May; 1512(1):77-89. PubMed ID: 11334626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between the orientation and the structural properties of peptides and their membrane interactions.
    Lins L; Decaffmeyer M; Thomas A; Brasseur R
    Biochim Biophys Acta; 2008; 1778(7-8):1537-44. PubMed ID: 18501700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles.
    Magzoub M; Eriksson LE; Gräslund A
    Biophys Chem; 2003 Mar; 103(3):271-88. PubMed ID: 12727289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural polymorphism of two CPP: an important parameter of activity.
    Deshayes S; Decaffmeyer M; Brasseur R; Thomas A
    Biochim Biophys Acta; 2008 May; 1778(5):1197-205. PubMed ID: 18316038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Distribution Fine-Tunes the Translocation of α-Helical Amphipathic Peptides across Membranes.
    Ablan FDO; Spaller BL; Abdo KI; Almeida PF
    Biophys J; 2016 Oct; 111(8):1738-1749. PubMed ID: 27760360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell penetration by transportan.
    Pooga M; Hällbrink M; Zorko M; Langel U
    FASEB J; 1998 Jan; 12(1):67-77. PubMed ID: 9438412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics.
    Almeida PF; Pokorny A
    Biochemistry; 2009 Sep; 48(34):8083-93. PubMed ID: 19655791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of transportan in bicelles is surface charge dependent.
    Bárány-Wallje E; Andersson A; Gräslund A; Mäler L
    J Biomol NMR; 2006 Jun; 35(2):137-47. PubMed ID: 16705358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular dynamics study of cell-penetrating peptide transportan-10 (TP10): Binding, folding and insertion to transmembrane state in zwitterionic membrane.
    Bennett AL; Cranford KN; Bates AL; Sabatini CR; Lee HS
    Biochim Biophys Acta Biomembr; 2024 Jan; 1866(1):184218. PubMed ID: 37634858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.