These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18260680)

  • 1. Aggregation of amphiphilic pyranines in water: facile micelle formation in the presence of methylviologen.
    Sasaki R; Murata S
    Langmuir; 2008 Mar; 24(6):2387-94. PubMed ID: 18260680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ monitoring of the synthesis of a pyranine-substituted phthalonitrile derivative via the steady-state fluorescence technique.
    Gelir A; Yilmaz I; Yilmaz Y
    J Phys Chem B; 2007 Jan; 111(2):478-84. PubMed ID: 17214500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrene-sensitized electron transport across vesicle bilayers: Dependence of transport efficiency on pyrene substituents.
    Mizushima T; Yoshida A; Harada A; Yoneda Y; Minatani T; Murata S
    Org Biomol Chem; 2006 Dec; 4(23):4336-44. PubMed ID: 17102879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lysophosphatidylcholine micelle and phosphatidylcholine liposome on photoreduction of methylviologen.
    Nakagaki M; Komatsu H; Handa T
    Arch Biochem Biophys; 1986 Sep; 249(2):388-96. PubMed ID: 3092740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced electron transfer reactions of pyranine with benzoquinone and titanium dioxide.
    Kathiravan A; Asha Jhonsi M
    Luminescence; 2016 Nov; 31(7):1344-1348. PubMed ID: 26923841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of photoinduced electron transfer from zinc-porphyrin to methyl viologen by supramolecular formation between monoclonal antibody and zinc-porphyrin.
    Harada A; Yamaguchi H; Okamoto K; Fukushima H; Shiotsuki K; Kamachi M
    Photochem Photobiol; 1999 Sep; 70(3):298-302. PubMed ID: 10483357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-corona structure of cubic silsesquioxane-poly(ethylene oxide) in aqueous solution: fluorescence, light scattering, and TEM studies.
    Mya KY; Li X; Chen L; Ni X; Li J; He C
    J Phys Chem B; 2005 May; 109(19):9455-62. PubMed ID: 16852135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic lauryl ester derivatives from aromatic amino acids: significance of chemical architecture in aqueous aggregation properties.
    Vijay R; Singh J; Baskar G; Ranganathan R
    J Phys Chem B; 2009 Oct; 113(42):13959-70. PubMed ID: 19778004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal cdS fluorescence quenching by MV2+ under continuous irradiation.
    Meahcov L; Sandu I
    J Fluoresc; 2004 Mar; 14(2):181-5. PubMed ID: 15615043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of dopamine and acetylcholine with an amphiphilic resorcinarene receptor in aqueous micelle system.
    Demura M; Yoshida T; Hirokawa T; Kumaki Y; Aizawa T; Nitta K; Bitter I; Tóth K
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1367-70. PubMed ID: 15713388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodamine 101-graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101.
    Bozkurt E; Acar M; Onganer Y; Meral K
    Phys Chem Chem Phys; 2014 Sep; 16(34):18276-81. PubMed ID: 25057924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of boronic acid-substituted viologens with pyranine: the effects of quencher charge on fluorescence quenching and glucose response.
    Cordes DB; Gamsey S; Sharrett Z; Miller A; Thoniyot P; Wessling RA; Singaram B
    Langmuir; 2005 Jul; 21(14):6540-7. PubMed ID: 15982064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical and photochemical studies of chlorophyll a and cobalt(II)tetraphenylporphyrin in poly(L-glutamate)-decylammonium ion complex.
    Ngweniform P; Kusumoto Y; Ikeda M; Somekawa S; Ahmmad B; Kurawaki J; Hayakawa K
    J Photochem Photobiol B; 2007 Jun; 87(3):154-62. PubMed ID: 17468007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of polymer aggregation and quencher size on amplified fluorescence quenching of conjugated polyelectrolytes.
    Jiang H; Zhao X; Schanze KS
    Langmuir; 2007 Aug; 23(18):9481-6. PubMed ID: 17676879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation number-based degrees of counterion dissociation in sodium n-alkyl sulfate micelles.
    Lebedeva NV; Shahine A; Bales BL
    J Phys Chem B; 2005 Oct; 109(42):19806-16. PubMed ID: 16853561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degree of micelle ionization and micellar growth for gemini surfactants detected by 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescence quenching.
    Kuwamoto K; Asakawa T; Ohta A; Miyagishi S
    Langmuir; 2005 Aug; 21(17):7691-5. PubMed ID: 16089370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micelle formation of sodium hyodeoxycholate.
    Matsuoka K; Takagi K; Honda C
    Chem Phys Lipids; 2013; 172-173():6-13. PubMed ID: 23665117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitization ability of a water soluble zinc(II)tetramethyltetrapyridinoporphyrazinium salt in aqueous solution and biomimetic reverse micelles medium.
    Tempesti TC; Stockert JC; Durantini EN
    J Phys Chem B; 2008 Dec; 112(49):15701-7. PubMed ID: 19053687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-soluble pillar[7]arene: synthesis, pH-controlled complexation with paraquat, and application in constructing supramolecular vesicles.
    Li Z; Yang J; Yu G; He J; Abliz Z; Huang F
    Org Lett; 2014 Apr; 16(7):2066-9. PubMed ID: 24666345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.