These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 18260827)

  • 1. N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2).
    He Y; Ramsay AJ; Hunt ML; Whitbread AK; Myers SA; Hooper JD
    Biochem J; 2008 May; 412(1):45-55. PubMed ID: 18260827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ubiquitin-protein ligase Nedd4-2 differentially interacts with and regulates members of the Tweety family of chloride ion channels.
    He Y; Hryciw DH; Carroll ML; Myers SA; Whitbread AK; Kumar S; Poronnik P; Hooper JD
    J Biol Chem; 2008 Aug; 283(35):24000-10. PubMed ID: 18577513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TTYH2, a human homologue of the Drosophila melanogaster gene tweety, is located on 17q24 and upregulated in renal cell carcinoma.
    Rae FK; Hooper JD; Eyre HJ; Sutherland GR; Nicol DL; Clements JA
    Genomics; 2001 Oct; 77(3):200-7. PubMed ID: 11597145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca
    Li B; Hoel CM; Brohawn SG
    Nat Commun; 2021 Nov; 12(1):6913. PubMed ID: 34824283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels.
    Suzuki M
    Exp Physiol; 2006 Jan; 91(1):141-7. PubMed ID: 16219661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human and mouse homologues of the Drosophila melanogaster tweety (tty) gene: a novel gene family encoding predicted transmembrane proteins.
    Campbell HD; Kamei M; Claudianos C; Woollatt E; Sutherland GR; Suzuki Y; Hida M; Sugano S; Young IG
    Genomics; 2000 Aug; 68(1):89-92. PubMed ID: 10950931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane.
    Schmieder S; Bogliolo S; Ehrenfeld J
    J Cell Physiol; 2007 Feb; 210(2):479-88. PubMed ID: 17111367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway.
    Li JG; Chen C; Liu-Chen LY
    Biochemistry; 2007 Sep; 46(38):10960-70. PubMed ID: 17711303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of N-glycosylation in the stability, trafficking and GABA-uptake of GABA-transporter 1. Terminal N-glycans facilitate efficient GABA-uptake activity of the GABA transporter.
    Cai G; Salonikidis PS; Fei J; Schwarz W; Schülein R; Reutter W; Fan H
    FEBS J; 2005 Apr; 272(7):1625-38. PubMed ID: 15794750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.
    Ignoul S; Simaels J; Hermans D; Annaert W; Eggermont J
    PLoS One; 2007 May; 2(5):e474. PubMed ID: 17534424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development.
    Halleran AD; Sehdev M; Rabe BA; Huyck RW; Williams CC; Saha MS
    Gene Expr Patterns; 2015 Jan; 17(1):38-44. PubMed ID: 25541457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells.
    Patnaik SK; Potvin B; Carlsson S; Sturm D; Leffler H; Stanley P
    Glycobiology; 2006 Apr; 16(4):305-17. PubMed ID: 16319083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel conserved hydrolase domain in the CLCA family of alleged calcium-activated chloride channels.
    Pawłowski K; Lepistö M; Meinander N; Sivars U; Varga M; Wieslander E
    Proteins; 2006 May; 63(3):424-39. PubMed ID: 16470849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of the extracellular domain of the membrane protein GlialCAM expressed in HEK and CHO cells and comparison of the glycosylation.
    Gaudry JP; Arod C; Sauvage C; Busso S; Dupraz P; Pankiewicz R; Antonsson B
    Protein Expr Purif; 2008 Mar; 58(1):94-102. PubMed ID: 18082421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The two N-glycans present on bovine Pofut1 are differently involved in its solubility and activity.
    Loriol C; Audfray A; Dupuy F; Germot A; Maftah A
    FEBS J; 2007 Mar; 274(5):1202-11. PubMed ID: 17263732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of N-glycosylation consensus sequences in the Kv3.1 channel.
    Brooks NL; Corey MJ; Schwalbe RA
    FEBS J; 2006 Jul; 273(14):3287-300. PubMed ID: 16792699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of structure, expression and PSD95-binding capacity of Lrfn, a novel family of neuronal transmembrane proteins.
    Morimura N; Inoue T; Katayama K; Aruga J
    Gene; 2006 Oct; 380(2):72-83. PubMed ID: 16828986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo.
    Berry KL; Hobert O
    J Mol Biol; 2006 Jun; 359(5):1316-33. PubMed ID: 16737711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels.
    Zhu J; Yan J; Thornhill WB
    FEBS J; 2012 Aug; 279(15):2632-44. PubMed ID: 22613618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS.
    Icking A; Matt S; Opitz N; Wiesenthal A; Müller-Esterl W; Schilling K
    J Cell Sci; 2005 Nov; 118(Pt 21):5059-69. PubMed ID: 16234328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.